These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38717262)

  • 21. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys).
    Zhu G; Bu W; Gao Y; Liu G
    PLoS One; 2012; 7(2):e31246. PubMed ID: 22363595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A MaxEnt Model of Citrus Black Fly
    da Silva NR; Souza PGC; de Oliveira GS; da Silva Santana A; Bacci L; Silva GA; Barry EJDV; de Aguiar Coelho F; Soares MA; Picanço MC; Sarmento RA; da Silva RS
    Plants (Basel); 2024 Feb; 13(4):. PubMed ID: 38498543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) using MaxEnt.
    Santana PA; Kumar L; Da Silva RS; Pereira JL; Picanço MC
    Pest Manag Sci; 2019 Oct; 75(10):2706-2715. PubMed ID: 30779307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change.
    Wei J; Zhang H; Zhao W; Zhao Q
    PLoS One; 2017; 12(7):e0180913. PubMed ID: 28700721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting the potential geographical distribution of onion thrips, Thrips tabaci in India based on climate change projections using MaxEnt.
    Karuppaiah V; Maruthadurai R; Das B; Soumia PS; Gadge AS; Thangasamy A; Ramesh SV; Shirsat DV; Mahajan V; Krishna H; Singh M
    Sci Rep; 2023 May; 13(1):7934. PubMed ID: 37193780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climate change effects on the diversity and distribution of soybean true bugs pests.
    Chen J; Jiang K; Li Y; Wang S; Bu W
    Pest Manag Sci; 2024 Oct; 80(10):5157-5167. PubMed ID: 39392090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ecological niche shift and suitable area expansion of a globally invasive species
    Wang LL; Yang CQ; Wang Y; Li XH; Wan FH; Zhang AB
    Ying Yong Sheng Tai Xue Bao; 2024 Mar; 35(3):797-805. PubMed ID: 38646768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling potential distribution of newly recorded ant, Brachyponera nigrita using Maxent under climate change in Pothwar region, Pakistan.
    Gull E Fareen A; Mahmood T; Bodlah I; Rashid A; Khalid A; Mahmood S
    PLoS One; 2022; 17(1):e0262451. PubMed ID: 35045121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting the Impact of Climate Change on the Future Distribution of
    Gao H; Wei X; Peng Y; Zhuo Z
    Insects; 2024 Jun; 15(6):. PubMed ID: 38921152
    [No Abstract]   [Full Text] [Related]  

  • 30. Potential distribution prediction of
    Fan YY; Gao HJ; Tao SM; Yin CL; Yu XP
    Ying Yong Sheng Tai Xue Bao; 2024 Aug; 35(8):2237-2246. PubMed ID: 39419809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forecasting the Expansion of
    Mao J; Meng F; Song Y; Li D; Ji Q; Hong Y; Lin J; Cai P
    Insects; 2024 Jun; 15(6):. PubMed ID: 38921132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling.
    Li Y; Shao W; Jiang J
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21751-21768. PubMed ID: 34773237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accessing habitat suitability and connectivity for the westernmost population of Asian black bear (Ursus thibetanus gedrosianus, Blanford, 1877) based on climate changes scenarios in Iran.
    Morovati M; Karami P; Bahadori Amjas F
    PLoS One; 2020; 15(11):e0242432. PubMed ID: 33206701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How climate change might influence the potential distribution of weed, bushmint (Hyptis suaveolens)?
    Padalia H; Srivastava V; Kushwaha SP
    Environ Monit Assess; 2015 Apr; 187(4):210. PubMed ID: 25810084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complete Mitochondrial Genomes of
    Kim MJ; Lee KH; Park JS; Jeong JS; Jeong NR; Lee W; Kim I
    Curr Issues Mol Biol; 2021 Sep; 43(3):1391-1418. PubMed ID: 34698117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Which SDM Model, CLIMEX vs. MaxEnt, Best Forecasts
    Hayat U; Shi J; Wu Z; Rizwan M; Haider MS
    Insects; 2024 May; 15(5):. PubMed ID: 38786880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Prediction of potential distribution of the invasive species Procambarus clarkii in China based on ecological niche models].
    Xiao Q; Zhang MT; Wu Y; Ding H; Lei JC; Zhu SL; Zhang ZH; Chen L
    Ying Yong Sheng Tai Xue Bao; 2020 Jan; 31(1):309-318. PubMed ID: 31957409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global Potential Geographical Distribution of the Southern Armyworm (
    Zhang Y; Zhao H; Qi Y; Li M; Yang N; Guo J; Xian X; Liu W
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting the habitat suitability of the invasive white mango scale, Aulacaspis tubercularis; Newstead, 1906 (Hemiptera: Diaspididae) using bioclimatic variables.
    Azrag AG; Mohamed SA; Ndlela S; Ekesi S
    Pest Manag Sci; 2022 Oct; 78(10):4114-4126. PubMed ID: 35657692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling the potential distribution of Bemisia tabaci in Europe in light of the climate change scenario.
    Gilioli G; Pasquali S; Parisi S; Winter S
    Pest Manag Sci; 2014 Oct; 70(10):1611-23. PubMed ID: 24458692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.