These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38717266)

  • 1. Development of fixed-point two-degree-of-freedom angular error measurement system with precision improvement function.
    Su YM; Liu CS
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38717266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for simultaneous measurement of five DOF motion errors of a rotary axis using a single-mode fiber-coupled laser.
    Li J; Feng Q; Bao C; Zhao Y
    Opt Express; 2018 Feb; 26(3):2535-2545. PubMed ID: 29401792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optical method based auto-collimation for measuring five degrees of freedom error motions of rotary axis.
    Zhao H; Ding W; Fan M; Xia H; Yu L
    Rev Sci Instrum; 2022 Dec; 93(12):125110. PubMed ID: 36586903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error Analysis and Compensation of a Laser Measurement System for Simultaneously Measuring Five-Degree-of-Freedom Error Motions of Linear Stages.
    Cai Y; Sang Q; Lou ZF; Fan KC
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31491908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Measurement System for Six-Degree-of-Freedom Geometric Errors of a Linear Guide of a Machine Tool.
    Liu CS; Lai JJ; Luo YT
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-degree-of-freedom autocollimator based on a combined target reflector.
    Guo Y; Cheng H; Wen Y; Feng Y
    Appl Opt; 2020 Mar; 59(8):2262-2269. PubMed ID: 32225756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error.
    Huang Y; Fan KC; Sun W; Liu S
    Opt Express; 2018 Jun; 26(13):17185-17198. PubMed ID: 30119533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement system and model for simultaneously measuring 6DOF geometric errors.
    Zhao Y; Zhang B; Feng Q
    Opt Express; 2017 Sep; 25(18):20993-21007. PubMed ID: 29041509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Targetless Method for Simultaneously Measuring Three-Degree-of-Freedom Angular Motion Errors with Digital Speckle Pattern Interferometry.
    Shi L; Wu S; Yan M; Niu H
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a Measurement System for Simultaneously Measuring Six-Degree-Of-Freedom Geometric Errors of a Long Linear Stage.
    Liu CS; Pu YF; Chen YT; Luo YT
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beam splitting target reflector based compensation for angular drift of laser beam in laser autocollimation of measuring small angle deviations.
    Zhu F; Tan J; Cui J
    Rev Sci Instrum; 2013 Jun; 84(6):065116. PubMed ID: 23822387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage.
    Huang HL; Liu CH; Jywe WY; Wang MS; Fang TH
    Rev Sci Instrum; 2007 Jun; 78(6):066103. PubMed ID: 17614647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust roll angular error measurement system for precision machines.
    Cai Y; Yang B; Fan KC
    Opt Express; 2019 Mar; 27(6):8027-8036. PubMed ID: 31052628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a compact four degree-of-freedom active compensation system to restrain laser's angular drift and parallel drift.
    Liu S; Tan S; Huang Y; Wang Y; Fan KC
    Rev Sci Instrum; 2019 Nov; 90(11):115002. PubMed ID: 31779377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters.
    Chen B; Xu B; Yan L; Zhang E; Liu Y
    Opt Express; 2015 Apr; 23(7):9052-73. PubMed ID: 25968740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Five-degrees-of-freedom diffractive laser encoder.
    Liu CH; Huang HL; Lee HW
    Appl Opt; 2009 May; 48(14):2767-77. PubMed ID: 19424401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology.
    Lou Y; Yan L; Chen B; Zhang S
    Opt Express; 2017 Mar; 25(6):6805-6821. PubMed ID: 28381023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the position and orientation of a flat piezoelectric micro-stage by moving the optical axis.
    Zhuang GY; Lee HW; Liu CH
    Rev Sci Instrum; 2014 Oct; 85(10):105004. PubMed ID: 25362446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A four parallel laser-based simultaneous measurement method for 6-degrees-of-freedom errors of rigid body with translational motion.
    Fu G; Zheng Y; Zhu S; Lu C; Deng X; Xie L; Yang J
    Rev Sci Instrum; 2022 Aug; 93(8):085101. PubMed ID: 36050090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optoelectronic measurement system for measuring 6-degree-of-freedom motion error of rotary parts.
    Chen CJ; Lin PD; Jywe WY
    Opt Express; 2007 Oct; 15(22):14601-17. PubMed ID: 19550740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.