These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38717376)

  • 1. Analyzing the Active Site and Predicting the Overall Activity of Alloy Catalysts.
    Zhou Q; Shou H; Qiao S; Cao Y; Zhang P; Wei S; Chen S; Wu X; Song L
    J Am Chem Soc; 2024 Jun; 146(22):15167-15175. PubMed ID: 38717376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the rational design of Pt-based alloy catalysts for the low-temperature water-gas shift reaction: from extended surfaces to single atom alloys.
    Yang Y; Shen T; Xu X
    Chem Sci; 2022 Jun; 13(21):6385-6396. PubMed ID: 35733891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion.
    Kobayashi H; Kusada K; Kitagawa H
    Acc Chem Res; 2015 Jun; 48(6):1551-9. PubMed ID: 25993560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction.
    Zhang L; Si R; Liu H; Chen N; Wang Q; Adair K; Wang Z; Chen J; Song Z; Li J; Banis MN; Li R; Sham TK; Gu M; Liu LM; Botton GA; Sun X
    Nat Commun; 2019 Oct; 10(1):4936. PubMed ID: 31666505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Cost Pt Alloys for Heterogeneous Catalysis Predicted by Density Functional Theory and Active Learning.
    Li X; Chiong R; Hu Z; Page AJ
    J Phys Chem Lett; 2021 Aug; 12(30):7305-7311. PubMed ID: 34319099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors.
    Yang Z; Gao W
    Adv Sci (Weinh); 2022 Apr; 9(12):e2106043. PubMed ID: 35229986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Engineering Multifunctional Active Sites of Ruthenium-Nickel Alloys for pH-Universal Ampere-Level Current-Density Hydrogen Evolution.
    Liu Y; Shi H; Dai TY; Zeng SP; Han GF; Wang TH; Wen Z; Lang XY; Jiang Q
    Small; 2024 Apr; ():e2311509. PubMed ID: 38587968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulating the Coordination Environment of Ruthenium Cluster Catalysts for the Alkaline Hydrogen Evolution Reaction.
    Liu T; Zhang W; Chen T; Liu D; Cao L; Ding T; Liu X; Pang B; Wang S; Wang L; Luo Q; Yao T
    J Phys Chem Lett; 2021 Aug; 12(33):8016-8023. PubMed ID: 34433277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?
    Escaño MC; Gyenge E; Nakanishi H; Kasai H
    J Nanosci Nanotechnol; 2011 Apr; 11(4):2944-51. PubMed ID: 21776658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of Multisite Trielement Ru-Ni-Fe Alloy Nanocatalysts with Efficient and Durable Catalytic Hydrogenation Performances.
    Zhao Y; Ke W; Shao J; Zheng F; Liu H; Shi L
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41204-41214. PubMed ID: 31588721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Stability RuNi/C Electrocatalyst for Efficient Hydrogen Oxidation Reaction in Alkaline Condition.
    Fu X; Chen Z; Zhang S; Wang J; Ding J; Han X
    Small; 2024 May; 20(18):e2307725. PubMed ID: 38057130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate and efficient machine learning models for predicting hydrogen evolution reaction catalysts based on structural and electronic feature engineering in alloys.
    Zhang J; Wang Y; Zhou X; Zhong C; Zhang K; Liu J; Hu K; Lin X
    Nanoscale; 2023 Jul; 15(26):11072-11082. PubMed ID: 37335261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Machine Learning Model Focusing on Active Sites for the Discovery of Bifunctional Oxygen Electrocatalysts in Binary Alloys.
    Wang C; Wang B; Wang C; Chang Z; Yang M; Wang R
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16050-16061. PubMed ID: 38512022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface sites assembled-strategy on Pt-Ru nanowires for accelerated methanol oxidation.
    Li M; Wang Y; Cai J; Li Y; Liu Y; Dong Y; Li S; Yuan X; Zhang X; Dai X
    Dalton Trans; 2020 Oct; 49(40):13999-14008. PubMed ID: 33078804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical insights into effect of surface composition of Pt-Ru bimetallic catalysts on CH
    Ou L
    J Mol Model; 2022 May; 28(6):149. PubMed ID: 35552840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenium-Cobalt Solid-Solution Alloy Nanoparticles for Enhanced Photopromoted Thermocatalytic CO
    Tang Y; Wang H; Guo C; Yang Z; Zhao T; Liu J; Jiang Y; Wang W; Zhang Q; Wu D; Zhao Y; Wen XD; Wang F
    ACS Nano; 2024 Apr; 18(17):11449-11461. PubMed ID: 38644575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of nanoparticle Pt-Ru fuel cell catalysts by heat treatment: a 195Pt NMR and electrochemical study.
    Babu PK; Kim HS; Kuk ST; Chung JH; Oldfield E; Wieckowski A; Smotkin ES
    J Phys Chem B; 2005 Sep; 109(36):17192-6. PubMed ID: 16853193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding Alkaline Hydrogen Oxidation Reaction on PdNiRuIrRh High-Entropy-Alloy by Machine Learning Potential.
    Men Y; Wu D; Hu Y; Li L; Li P; Jia S; Wang J; Cheng G; Chen S; Luo W
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202217976. PubMed ID: 37129537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.