These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38717466)

  • 1. An open auscultation dataset for machine learning-based respiratory diagnosis studies.
    Zhou G; Liu C; Li X; Liang S; Wang R; Huang X
    JASA Express Lett; 2024 May; 4(5):. PubMed ID: 38717466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical implementation of artificial intelligence algorithms in pulmonary auscultation examination.
    Grzywalski T; Piecuch M; Szajek M; Bręborowicz A; Hafke-Dys H; Kociński J; Pastusiak A; Belluzzo R
    Eur J Pediatr; 2019 Jun; 178(6):883-890. PubMed ID: 30927097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring machine learning for audio-based respiratory condition screening: A concise review of databases, methods, and open issues.
    Xia T; Han J; Mascolo C
    Exp Biol Med (Maywood); 2022 Nov; 247(22):2053-2061. PubMed ID: 35974706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Usability of Computerized Lung Auscultation-Sound Software (CLASS) for learning pulmonary auscultation.
    Machado A; Oliveira A; Jácome C; Pereira M; Moreira J; Rodrigues J; Aparício J; Jesus LMT; Marques A
    Med Biol Eng Comput; 2018 Apr; 56(4):623-633. PubMed ID: 28840490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPRSound: Open-Source SJTU Paediatric Respiratory Sound Database.
    Zhang Q; Zhang J; Yuan J; Huang H; Zhang Y; Zhang B; Lv G; Lin S; Wang N; Liu X; Tang M; Wang Y; Ma H; Liu L; Yuan S; Zhou H; Zhao J; Li Y; Yin Y; Zhao L; Wang G; Lian Y
    IEEE Trans Biomed Circuits Syst; 2022 Oct; 16(5):867-881. PubMed ID: 36070274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Normal and Adventitious Breath Sounds].
    Koehler U; Hildebrandt O; Kerzel S; Urban C; Hoehle L; Weissflog A; Nikolaizik W; Koehler J; Sohrabi K; Gross V
    Pneumologie; 2016 Jun; 70(6):397-404. PubMed ID: 27177168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning.
    Kim Y; Hyon Y; Jung SS; Lee S; Yoo G; Chung C; Ha T
    Sci Rep; 2021 Aug; 11(1):17186. PubMed ID: 34433880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of pulmonary pathology from breath sounds using the wavelet packet transform and an extreme learning machine.
    Palaniappan R; Sundaraj K; Sundaraj S; Huliraj N; Revadi SS
    Biomed Tech (Berl); 2018 Jul; 63(4):383-394. PubMed ID: 28596461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lung sounds classification using convolutional neural networks.
    Bardou D; Zhang K; Ahmad SM
    Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Lung auscultation in the 21th century].
    Bertrand Z F; Segall K D; Sánchez D I; Bertrand N P
    Rev Chil Pediatr; 2020 Aug; 91(4):500-506. PubMed ID: 33399725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of semi-supervised deep learning to lung sound analysis.
    Chamberlain D; Kodgule R; Ganelin D; Miglani V; Fletcher RR
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():804-807. PubMed ID: 28324938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unwrapping the phase portrait features of adventitious crackle for auscultation and classification: a machine learning approach.
    Sreejyothi S; Renjini A; Raj V; Swapna MNS; Sankararaman SI
    J Biol Phys; 2021 Jun; 47(2):103-115. PubMed ID: 33905049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computerized Lung Sound Screening for Pediatric Auscultation in Noisy Field Environments.
    Emmanouilidou D; McCollum ED; Park DE; Elhilali M
    IEEE Trans Biomed Eng; 2018 Jul; 65(7):1564-1574. PubMed ID: 28641244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine-learning based approach to quantify fine crackles in the diagnosis of interstitial pneumonia: A proof-of-concept study.
    Horimasu Y; Ohshimo S; Yamaguchi K; Sakamoto S; Masuda T; Nakashima T; Miyamoto S; Iwamoto H; Fujitaka K; Hamada H; Sadamori T; Shime N; Hattori N
    Medicine (Baltimore); 2021 Feb; 100(7):e24738. PubMed ID: 33607819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis.
    Gurung A; Scrafford CG; Tielsch JM; Levine OS; Checkley W
    Respir Med; 2011 Sep; 105(9):1396-403. PubMed ID: 21676606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-channel classification of respiratory sounds.
    Yilmaz CA; Kahya YP
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2864-7. PubMed ID: 17946985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring classical machine learning for identification of pathological lung auscultations.
    Razvadauskas H; Vaičiukynas E; Buškus K; Arlauskas L; Nowaczyk S; Sadauskas S; Naudžiūnas A
    Comput Biol Med; 2024 Jan; 168():107784. PubMed ID: 38042100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated computerized auscultation and diagnostic system for pulmonary diseases.
    Abbas A; Fahim A
    J Med Syst; 2010 Dec; 34(6):1149-55. PubMed ID: 20703592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning approach to the development and prospective evaluation of a pediatric lung sound classification model.
    Park JS; Kim K; Kim JH; Choi YJ; Kim K; Suh DI
    Sci Rep; 2023 Jan; 13(1):1289. PubMed ID: 36690658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data augmentation using Variational Autoencoders for improvement of respiratory disease classification.
    Saldanha J; Chakraborty S; Patil S; Kotecha K; Kumar S; Nayyar A
    PLoS One; 2022; 17(8):e0266467. PubMed ID: 35960763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.