These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 38717857)

  • 41. Comparing Mfd- and UvrD-dependent models of transcription coupled DNA repair in live Escherichia coli using single-molecule tracking.
    Kaja E; Vijande D; Kowalczyk J; Michalak M; GapiƄski J; Kobras C; Rolfe P; Stracy M
    DNA Repair (Amst); 2024 May; 137():103665. PubMed ID: 38513450
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rad26, the yeast homolog of the cockayne syndrome B gene product, counteracts inhibition of DNA repair due to RNA polymerase II transcription.
    Tijsterman M; Brouwer J
    J Biol Chem; 1999 Jan; 274(3):1199-202. PubMed ID: 9880486
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monofunctional platinum-DNA adducts are strong inhibitors of transcription and substrates for nucleotide excision repair in live mammalian cells.
    Zhu G; Myint M; Ang WH; Song L; Lippard SJ
    Cancer Res; 2012 Feb; 72(3):790-800. PubMed ID: 22180496
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Involvement of mismatch repair in transcription-coupled nucleotide excision repair.
    Kobayashi K; Karran P; Oda S; Yanaga K
    Hum Cell; 2005 Sep; 18(3):103-15. PubMed ID: 17022143
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection and determination of oligonucleotide triplex formation-mediated transcription-coupled DNA repair in HeLa nuclear extracts.
    Wang G; Chen Z; Zhang S; Wilson GL; Jing K
    Nucleic Acids Res; 2001 Apr; 29(8):1801-7. PubMed ID: 11292853
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The sensitivity of human fibroblasts to N-acetoxy-2-acetylaminofluorene is determined by the extent of transcription-coupled repair, and/or their capability to counteract RNA synthesis inhibition.
    van Oosterwijk MF; Filon R; Kalle WH; Mullenders LH; van Zeeland AA
    Nucleic Acids Res; 1996 Dec; 24(23):4653-9. PubMed ID: 8972850
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli.
    Cohen SE; Lewis CA; Mooney RA; Kohanski MA; Collins JJ; Landick R; Walker GC
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15517-22. PubMed ID: 20696893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Clustered sites of DNA repair synthesis during early nucleotide excision repair in ultraviolet light-irradiated quiescent human fibroblasts.
    Svetlova M; Solovjeva L; Pleskach N; Yartseva N; Yakovleva T; Tomilin N; Hanawalt P
    Exp Cell Res; 2002 Jun; 276(2):284-95. PubMed ID: 12027458
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanistic insights into transcription coupled DNA repair.
    Pani B; Nudler E
    DNA Repair (Amst); 2017 Aug; 56():42-50. PubMed ID: 28629777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The DNA damage response to transcription stress.
    Lans H; Hoeijmakers JHJ; Vermeulen W; Marteijn JA
    Nat Rev Mol Cell Biol; 2019 Dec; 20(12):766-784. PubMed ID: 31558824
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcription blockage by bulky end termini at single-strand breaks in the DNA template: differential effects of 5' and 3' adducts.
    Neil AJ; Belotserkovskii BP; Hanawalt PC
    Biochemistry; 2012 Nov; 51(44):8964-70. PubMed ID: 23066636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rpb1 sumoylation in response to UV radiation or transcriptional impairment in yeast.
    Chen X; Ding B; LeJeune D; Ruggiero C; Li S
    PLoS One; 2009; 4(4):e5267. PubMed ID: 19384408
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reprogramming transcription after DNA damage: recognition, response, repair, and restart.
    Lu H; Yang M; Zhou Q
    Trends Cell Biol; 2023 Aug; 33(8):682-694. PubMed ID: 36513571
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.
    Xu J; Lahiri I; Wang W; Wier A; Cianfrocco MA; Chong J; Hare AA; Dervan PB; DiMaio F; Leschziner AE; Wang D
    Nature; 2017 Nov; 551(7682):653-657. PubMed ID: 29168508
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA damage response and transcription.
    Lagerwerf S; Vrouwe MG; Overmeer RM; Fousteri MI; Mullenders LH
    DNA Repair (Amst); 2011 Jul; 10(7):743-50. PubMed ID: 21622031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts.
    You C; Wang Y
    Acc Chem Res; 2016 Feb; 49(2):205-13. PubMed ID: 26758048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins.
    Dutta A; Yang C; Sengupta S; Mitra S; Hegde ML
    Cell Mol Life Sci; 2015 May; 72(9):1679-98. PubMed ID: 25575562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase.
    Dimitri A; Jia L; Shafirovich V; Geacintov NE; Broyde S; Scicchitano DA
    DNA Repair (Amst); 2008 Aug; 7(8):1276-88. PubMed ID: 18555749
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transcription processing at 1,N2-ethenoguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase.
    Dimitri A; Goodenough AK; Guengerich FP; Broyde S; Scicchitano DA
    J Mol Biol; 2008 Jan; 375(2):353-66. PubMed ID: 18022639
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of DNA lesions on transcription elongation.
    Tornaletti S; Hanawalt PC
    Biochimie; 1999; 81(1-2):139-46. PubMed ID: 10214918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.