These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38717857)

  • 81. Transcription arrest at DNA damage sites.
    Tornaletti S
    Mutat Res; 2005 Sep; 577(1-2):131-45. PubMed ID: 15904937
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A new connection of mRNP biogenesis and export with transcription-coupled repair.
    Gaillard H; Wellinger RE; Aguilera A
    Nucleic Acids Res; 2007; 35(12):3893-906. PubMed ID: 17537816
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The complex choreography of transcription-coupled repair.
    Spivak G; Ganesan AK
    DNA Repair (Amst); 2014 Jul; 19():64-70. PubMed ID: 24751236
    [TBL] [Abstract][Full Text] [Related]  

  • 84. RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS.
    Kuraoka I; Suzuki K; Ito S; Hayashida M; Kwei JS; Ikegami T; Handa H; Nakabeppu Y; Tanaka K
    DNA Repair (Amst); 2007 Jun; 6(6):841-51. PubMed ID: 17374514
    [TBL] [Abstract][Full Text] [Related]  

  • 85. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand.
    Bucheli M; Sweder K
    Mol Microbiol; 2004 Jun; 52(6):1653-63. PubMed ID: 15186415
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Rpb7 represses transcription-coupled nucleotide excision repair.
    Gong W; Li S
    J Biol Chem; 2023 Aug; 299(8):104969. PubMed ID: 37380080
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis.
    Kuraoka I; Endou M; Yamaguchi Y; Wada T; Handa H; Tanaka K
    J Biol Chem; 2003 Feb; 278(9):7294-9. PubMed ID: 12466278
    [TBL] [Abstract][Full Text] [Related]  

  • 88. When transcription and repair meet: a complex system.
    Lainé JP; Egly JM
    Trends Genet; 2006 Aug; 22(8):430-6. PubMed ID: 16797777
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Transcription coupled base excision repair in mammalian cells: So little is known and so much to uncover.
    Chakraborty A; Tapryal N; Islam A; Mitra S; Hazra T
    DNA Repair (Amst); 2021 Nov; 107():103204. PubMed ID: 34390916
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Construction and purification of site-specifically modified DNA templates for transcription assays.
    Perlow RA; Schinecker TM; Kim SJ; Geacintov NE; Scicchitano DA
    Nucleic Acids Res; 2003 Apr; 31(7):e40. PubMed ID: 12655028
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The sensitivity of Cockayne's syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes.
    van Oosterwijk MF; Versteeg A; Filon R; van Zeeland AA; Mullenders LH
    Mol Cell Biol; 1996 Aug; 16(8):4436-44. PubMed ID: 8754844
    [TBL] [Abstract][Full Text] [Related]  

  • 92. New insights for understanding the transcription-coupled repair pathway.
    Sarasin A; Stary A
    DNA Repair (Amst); 2007 Feb; 6(2):265-9. PubMed ID: 17194629
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Multiple roles of ubiquitination in the control of nucleotide excision repair.
    Nouspikel T
    Mech Ageing Dev; 2011 Aug; 132(8-9):355-65. PubMed ID: 21466822
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Transcription-coupled DNA repair in prokaryotes.
    Ganesan A; Spivak G; Hanawalt PC
    Prog Mol Biol Transl Sci; 2012; 110():25-40. PubMed ID: 22749141
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Structural basis for RNA polymerase II ubiquitylation and inactivation in transcription-coupled repair.
    Kokic G; Yakoub G; van den Heuvel D; Wondergem AP; van der Meer PJ; van der Weegen Y; Chernev A; Fianu I; Fokkens TJ; Lorenz S; Urlaub H; Cramer P; Luijsterburg MS
    Nat Struct Mol Biol; 2024 Mar; 31(3):536-547. PubMed ID: 38316879
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Suppressor mutations in Escherichia coli RNA polymerase alter transcription initiation but do not affect translesion RNA synthesis in vitro.
    Miropolskaya N; Petushkov I; Esyunina D; Kulbachinskiy A
    J Biol Chem; 2022 Jul; 298(7):102099. PubMed ID: 35667439
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The role of Transcription Factor IIH complex in nucleotide excision repair.
    Hoag A; Duan M; Mao P
    Environ Mol Mutagen; 2024 Apr; 65 Suppl 1(Suppl 1):72-81. PubMed ID: 37545038
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Defective nucleotide excision repair in yeast hpr1 and tho2 mutants.
    González-Barrera S; Prado F; Verhage R; Brouwer J; Aguilera A
    Nucleic Acids Res; 2002 May; 30(10):2193-201. PubMed ID: 12000839
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair.
    van den Heuvel D; Spruijt CG; González-Prieto R; Kragten A; Paulsen MT; Zhou D; Wu H; Apelt K; van der Weegen Y; Yang K; Dijk M; Daxinger L; Marteijn JA; Vertegaal ACO; Ljungman M; Vermeulen M; Luijsterburg MS
    Nat Commun; 2021 Feb; 12(1):1342. PubMed ID: 33637760
    [TBL] [Abstract][Full Text] [Related]  

  • 100. DNA polymerase mutagenic bypass and proofreading of endogenous DNA lesions.
    Eckert KA; Opresko PL
    Mutat Res; 1999 Mar; 424(1-2):221-36. PubMed ID: 10064863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.