BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38717972)

  • 1. Analysis of Methylesterase Gene Family in
    Jia R; Xing K; Tian L; Dong X; Yu L; Shen X; Wang Y
    J Agric Food Chem; 2024 May; 72(20):11392-11404. PubMed ID: 38717972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strawberry
    Jia S; Wang Y; Zhang G; Yan Z; Cai Q
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent Preharvest Applications of Methyl Jasmonate and Chitosan Elicit Differential Upregulation of Defense-Related Genes with Reduced Incidence of Gray Mold Decay during Postharvest Storage of Fragaria chiloensis Fruit.
    Saavedra GM; Sanfuentes E; Figueroa PM; Figueroa CR
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28671619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry.
    Negrini F; O'Grady K; Hyvönen M; Folta KM; Baraldi E
    PLoS One; 2020; 15(3):e0226448. PubMed ID: 32214345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demethylation of oligogalacturonides by FaPE1 in the fruits of the wild strawberry Fragaria vesca triggers metabolic and transcriptional changes associated with defence and development of the fruit.
    Osorio S; Bombarely A; Giavalisco P; Usadel B; Stephens C; Aragüez I; Medina-Escobar N; Botella MA; Fernie AR; Valpuesta V
    J Exp Bot; 2011 May; 62(8):2855-73. PubMed ID: 21273336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of Direct or Priming Resistance against Botrytis cinerea in Strawberries by β-Aminobutyric Acid and Their Effects on Sucrose Metabolism.
    Wang K; Liao Y; Xiong Q; Kan J; Cao S; Zheng Y
    J Agric Food Chem; 2016 Jul; 64(29):5855-65. PubMed ID: 27368357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft mechanical stimulation induces a defense response against Botrytis cinerea in strawberry.
    Tomas-Grau RH; Requena-Serra FJ; Hael-Conrad V; Martínez-Zamora MG; Guerrero-Molina MF; Díaz-Ricci JC
    Plant Cell Rep; 2018 Feb; 37(2):239-250. PubMed ID: 29032427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry (Fragaria vesca).
    Osorio S; Castillejo C; Quesada MA; Medina-Escobar N; Brownsey GJ; Suau R; Heredia A; Botella MA; Valpuesta V
    Plant J; 2008 Apr; 54(1):43-55. PubMed ID: 18088306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome Analysis of the Fruit of Two Strawberry Cultivars "Sunnyberry" and "Kingsberry" That Show Different Susceptibility to
    Lee K; Lee JG; Min K; Choi JH; Lim S; Lee EJ
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the role of AcTPR2 in kiwifruit and its response to Botrytis cinerea infection.
    Li ZX; Lan JB; Liu YQ; Qi LW; Tang JM
    BMC Plant Biol; 2020 Dec; 20(1):557. PubMed ID: 33302873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a strawberry NPR-like gene involved in negative regulation of the salicylic acid-mediated defense pathway.
    Shu LJ; Liao JY; Lin NC; Chung CL
    PLoS One; 2018; 13(10):e0205790. PubMed ID: 30312354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A histone deacetylase, FaSRT1-2, plays multiple roles in regulating fruit ripening, plant growth and stresses resistance of cultivated strawberry.
    Wang L; Lin Y; Hou G; Yang M; Peng Y; Jiang Y; He C; She M; Chen Q; Li M; Zhang Y; Zhang Y; Wang Y; He W; Wang X; Tang H; Luo Y
    Plant Cell Environ; 2024 Jun; 47(6):2258-2273. PubMed ID: 38482979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection.
    Peian Z; Haifeng J; Peijie G; Sadeghnezhad E; Qianqian P; Tianyu D; Teng L; Huanchun J; Jinggui F
    Food Chem; 2021 Feb; 337():127772. PubMed ID: 32777571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The wild strawberry kinome: identification, classification and transcript profiling of protein kinases during development and in response to gray mold infection.
    Liu H; Qu W; Zhu K; Cheng ZM
    BMC Genomics; 2020 Sep; 21(1):635. PubMed ID: 32928117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis.
    Akagi A; Dandekar AM; Stotz HU
    Phytopathology; 2011 Nov; 101(11):1311-21. PubMed ID: 21809978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jasmonate increases terpene synthase expression, leading to strawberry resistance to Botrytis cinerea infection.
    Zhang Z; Lu S; Yu W; Ehsan S; Zhang Y; Jia H; Fang J
    Plant Cell Rep; 2022 May; 41(5):1243-1260. PubMed ID: 35325290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of known and novel microRNAs in strawberry fruits induced by Botrytis cinerea.
    Liang Y; Guan Y; Wang S; Li Y; Zhang Z; Li H
    Sci Rep; 2018 Jul; 8(1):10921. PubMed ID: 30026481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance.
    Rupp S; Plesken C; Rumsey S; Dowling M; Schnabel G; Weber RWS; Hahn M
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235878
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea.
    Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L
    J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.
    Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.