These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38718121)

  • 21. Cardiomyocyte Sirt (Sirtuin) 7 Ameliorates Stress-Induced Cardiac Hypertrophy by Interacting With and Deacetylating GATA4.
    Yamamura S; Izumiya Y; Araki S; Nakamura T; Kimura Y; Hanatani S; Yamada T; Ishida T; Yamamoto M; Onoue Y; Arima Y; Yamamoto E; Sunagawa Y; Yoshizawa T; Nakagata N; Bober E; Braun T; Sakamoto K; Kaikita K; Morimoto T; Yamagata K; Tsujita K
    Hypertension; 2020 Jan; 75(1):98-108. PubMed ID: 31735083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolomic Analysis of the Ameliorative Effect of Enhanced Proline Metabolism on Hypoxia-Induced Injury in Cardiomyocytes.
    Wang J; Xue Z; Hua C; Lin J; Shen Z; Song Y; Ying H; Lv Q; Wang M; Zhou B
    Oxid Med Cell Longev; 2020; 2020():8866946. PubMed ID: 33294127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mnk1 (Mitogen-Activated Protein Kinase-Interacting Kinase 1) Deficiency Aggravates Cardiac Remodeling in Mice.
    Yuan Y; Yan L; Wu QQ; Zhou H; Jin YG; Bian ZY; Deng W; Yang Z; Shen DF; Zeng XF; Wang SS; Li H; Tang QZ
    Hypertension; 2016 Dec; 68(6):1393-1399. PubMed ID: 27698061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disruption of actin dynamics regulated by Rho effector mDia1 attenuates pressure overload-induced cardiac hypertrophic responses and exacerbates dysfunction.
    Abe I; Terabayashi T; Hanada K; Kondo H; Teshima Y; Ishii Y; Miyoshi M; Kira S; Saito S; Tsuchimochi H; Shirai M; Yufu K; Arakane M; Daa T; Thumkeo D; Narumiya S; Takahashi N; Ishizaki T
    Cardiovasc Res; 2021 Mar; 117(4):1103-1117. PubMed ID: 32647865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiomyocyte ZKSCAN3 regulates remodeling following pressure-overload.
    Ouyang X; Bakshi S; Benavides GA; Sun Z; Hernandez-Moreno G; Collins HE; Kane MS; Litovsky S; Young ME; Chatham JC; Darley-Usmar V; Wende AR; Zhang J
    Physiol Rep; 2023 May; 11(9):e15686. PubMed ID: 37144628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload.
    Shimano M; Ouchi N; Nakamura K; van Wijk B; Ohashi K; Asaumi Y; Higuchi A; Pimentel DR; Sam F; Murohara T; van den Hoff MJ; Walsh K
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):E899-906. PubMed ID: 21987816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of different angiotensin II type 1 receptor blockers on the regulation of the ACE-AngII-AT1 and ACE2-Ang(1-7)-Mas axes in pressure overload-induced cardiac remodeling in male mice.
    Wang X; Ye Y; Gong H; Wu J; Yuan J; Wang S; Yin P; Ding Z; Kang L; Jiang Q; Zhang W; Li Y; Ge J; Zou Y
    J Mol Cell Cardiol; 2016 Aug; 97():180-90. PubMed ID: 27210827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Depletion of β3-adrenergic receptor relieves pressure overload-induced cardiac hypertrophy and heart failure via enhancing innate immune response.
    Wei X; Zhang A; Yang W; Fang Y
    Biomed Pharmacother; 2021 Nov; 143():112194. PubMed ID: 34563949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of MicroRNA-146a and Overexpression of Its Target Dihydrolipoyl Succinyltransferase Protect Against Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction.
    Heggermont WA; Papageorgiou AP; Quaegebeur A; Deckx S; Carai P; Verhesen W; Eelen G; Schoors S; van Leeuwen R; Alekseev S; Elzenaar I; Vinckier S; Pokreisz P; Walravens AS; Gijsbers R; Van Den Haute C; Nickel A; Schroen B; van Bilsen M; Janssens S; Maack C; Pinto Y; Carmeliet P; Heymans S
    Circulation; 2017 Aug; 136(8):747-761. PubMed ID: 28611091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice.
    Goh KY; He L; Song J; Jinno M; Rogers AJ; Sethu P; Halade GV; Rajasekaran NS; Liu X; Prabhu SD; Darley-Usmar V; Wende AR; Zhou L
    Redox Biol; 2019 Feb; 21():101100. PubMed ID: 30641298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ATP-binding cassette transporter ABCG2 protects against pressure overload-induced cardiac hypertrophy and heart failure by promoting angiogenesis and antioxidant response.
    Higashikuni Y; Sainz J; Nakamura K; Takaoka M; Enomoto S; Iwata H; Tanaka K; Sahara M; Hirata Y; Nagai R; Sata M
    Arterioscler Thromb Vasc Biol; 2012 Mar; 32(3):654-61. PubMed ID: 22116099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diminished arachidonate 5-lipoxygenase perturbs phase separation and transcriptional response of Runx2 to reverse pathological ventricular remodeling.
    Xie S; Chen M; Fang W; Liu S; Wu Q; Liu C; Xing Y; Shi W; Xu M; Zhang M; Chen S; Zeng X; Wang S; Deng W; Tang Q
    EBioMedicine; 2022 Dec; 86():104359. PubMed ID: 36395739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pressure overload inhibits glucocorticoid receptor transcriptional activity in cardiomyocytes and promotes pathological cardiac hypertrophy.
    Matsuhashi T; Endo J; Katsumata Y; Yamamoto T; Shimizu N; Yoshikawa N; Kataoka M; Isobe S; Moriyama H; Goto S; Fukuda K; Tanaka H; Sano M
    J Mol Cell Cardiol; 2019 May; 130():122-130. PubMed ID: 30946837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CTGF knockout does not affect cardiac hypertrophy and fibrosis formation upon chronic pressure overload.
    Fontes MS; Kessler EL; van Stuijvenberg L; Brans MA; Falke LL; Kok B; Leask A; van Rijen HV; Vos MA; Goldschmeding R; van Veen TA
    J Mol Cell Cardiol; 2015 Nov; 88():82-90. PubMed ID: 26410398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abnormalities in lysine degradation are involved in early cardiomyocyte hypertrophy development in pressure-overloaded rats.
    Liu J; Hu J; Tan L; Zhou Q; Wu X
    BMC Cardiovasc Disord; 2021 Aug; 21(1):403. PubMed ID: 34418957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload.
    Matsusaka H; Ide T; Matsushima S; Ikeuchi M; Kubota T; Sunagawa K; Kinugawa S; Tsutsui H
    Hypertension; 2006 Apr; 47(4):711-7. PubMed ID: 16505197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose transporter 4-deficient hearts develop maladaptive hypertrophy in response to physiological or pathological stresses.
    Wende AR; Kim J; Holland WL; Wayment BE; O'Neill BT; Tuinei J; Brahma MK; Pepin ME; McCrory MA; Luptak I; Halade GV; Litwin SE; Abel ED
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1098-H1108. PubMed ID: 28822962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling.
    Karakikes I; Chaanine AH; Kang S; Mukete BN; Jeong D; Zhang S; Hajjar RJ; Lebeche D
    J Am Heart Assoc; 2013 Apr; 2(2):e000078. PubMed ID: 23612897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-κB.
    Verma SK; Krishnamurthy P; Barefield D; Singh N; Gupta R; Lambers E; Thal M; Mackie A; Hoxha E; Ramirez V; Qin G; Sadayappan S; Ghosh AK; Kishore R
    Circulation; 2012 Jul; 126(4):418-29. PubMed ID: 22705886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trimetazidine attenuates pressure overload-induced early cardiac energy dysfunction via regulation of neuropeptide Y system in a rat model of abdominal aortic constriction.
    Chen A; Li W; Chen X; Shen Y; Dai W; Dong Q; Li X; Ou C; Chen M
    BMC Cardiovasc Disord; 2016 Nov; 16(1):225. PubMed ID: 27855650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.