These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38718170)

  • 1. DeepPPAPredMut: deep ensemble method for predicting the binding affinity change in protein-protein complexes upon mutation.
    Nikam R; Jemimah S; Gromiha MM
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38718170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ProAffiMuSeq: sequence-based method to predict the binding free energy change of protein-protein complexes upon mutation using functional classification.
    Jemimah S; Sekijima M; Gromiha MM
    Bioinformatics; 2020 Mar; 36(6):1725-1730. PubMed ID: 31713585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based method for predicting and classifying the binding affinity of protein-protein complexes.
    Nikam R; Yugandhar K; Gromiha MM
    Biochim Biophys Acta Proteins Proteom; 2023 Nov; 1871(6):140948. PubMed ID: 37567456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PCA-MutPred: Prediction of Binding Free Energy Change Upon Missense Mutation in Protein-carbohydrate Complexes.
    Siva Shanmugam NR; Veluraja K; Michael Gromiha M
    J Mol Biol; 2022 Jun; 434(11):167526. PubMed ID: 35662456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepBSRPred: deep learning-based binding site residue prediction for proteins.
    Nikam R; Yugandhar K; Gromiha MM
    Amino Acids; 2023 Oct; 55(10):1305-1316. PubMed ID: 36574037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of protein-carbohydrate complex binding affinity using structural features.
    Siva Shanmugam NR; Jino Blessy J; Veluraja K; Gromiha MM
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProBAPred: Inferring protein-protein binding affinity by incorporating protein sequence and structural features.
    Lu B; Li C; Chen Q; Song J
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850011. PubMed ID: 29954286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. emPDBA: protein-DNA binding affinity prediction by combining features from binding partners and interface learned with ensemble regression model.
    Yang S; Gong W; Zhou T; Sun X; Chen L; Zhou W; Li C
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37193676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MPA-Pred: A machine learning approach for predicting the binding affinity of membrane protein-protein complexes.
    Ridha F; Gromiha MM
    Proteins; 2024 Apr; 92(4):499-508. PubMed ID: 37949651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PDA-Pred: Predicting the binding affinity of protein-DNA complexes using machine learning techniques and structural features.
    Harini K; Kihara D; Michael Gromiha M
    Methods; 2023 May; 213():10-17. PubMed ID: 36924867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PRA-Pred: Structure-based prediction of protein-RNA binding affinity.
    Harini K; Sekijima M; Gromiha MM
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129490. PubMed ID: 38224813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DDMut-PPI: predicting effects of mutations on protein-protein interactions using graph-based deep learning.
    Zhou Y; Myung Y; Rodrigues CHM; Ascher DB
    Nucleic Acids Res; 2024 Jul; 52(W1):W207-W214. PubMed ID: 38783112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MPTherm-pred: Analysis and Prediction of Thermal Stability Changes upon Mutations in Transmembrane Proteins.
    Kulandaisamy A; Zaucha J; Frishman D; Gromiha MM
    J Mol Biol; 2021 May; 433(11):166646. PubMed ID: 32920050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AbsoluRATE: An in-silico method to predict the aggregation kinetics of native proteins.
    Rawat P; Prabakaran R; Kumar S; Gromiha MM
    Biochim Biophys Acta Proteins Proteom; 2021 Sep; 1869(9):140682. PubMed ID: 34102324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations.
    Iqbal S; Li F; Akutsu T; Ascher DB; Webb GI; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34058752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Software for Predicting Binding Free Energy of Protein-Protein Complexes and Their Mutants.
    Jarończyk M
    Methods Mol Biol; 2024; 2780():139-147. PubMed ID: 38987468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding RaCe: a robust method for predicting changes in protein folding rates upon point mutations.
    Chaudhary P; Naganathan AN; Gromiha MM
    Bioinformatics; 2015 Jul; 31(13):2091-7. PubMed ID: 25686635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ProBAN: Neural network algorithm for predicting binding affinity in protein-protein complexes.
    Bogdanova EA; Novoseletsky VN
    Proteins; 2024 Sep; 92(9):1127-1136. PubMed ID: 38722047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.