BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38718188)

  • 1. Application of Hierarchically Porous Chitosan Monolith for Enzyme Immobilization.
    Hajili E; Sugawara A; Uyama H
    Biomacromolecules; 2024 Jun; 25(6):3486-3498. PubMed ID: 38718188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of lipase on porous monodisperse chitosan microspheres.
    Chen Y; Liu J; Xia C; Zhao C; Ren Z; Zhang W
    Biotechnol Appl Biochem; 2015; 62(1):101-6. PubMed ID: 24823273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified chitosan microspheres in non-aggregated amylase immobilization.
    Rana M; Kumari A; Chauhan GS; Chauhan K
    Int J Biol Macromol; 2014 May; 66():46-51. PubMed ID: 24556121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of α-amylase on chitosan-montmorillonite nanocomposite beads.
    Mardani T; Khiabani MS; Mokarram RR; Hamishehkar H
    Int J Biol Macromol; 2018 Dec; 120(Pt A):354-360. PubMed ID: 30114424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different strategies for the lipase immobilization on the chitosan based supports and their applications.
    Rafiee F; Rezaee M
    Int J Biol Macromol; 2021 May; 179():170-195. PubMed ID: 33667561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhizomucor miehei lipase immobilized on reinforced chitosan-chitin nanowhiskers support for synthesis of eugenyl benzoate.
    Abdul Manan FM; Attan N; Widodo N; Aboul-Enein HY; Wahab RA
    Prep Biochem Biotechnol; 2018 Jan; 48(1):92-102. PubMed ID: 29194017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of pancreatic lipase on chitin and chitosan.
    Kilinç A; Teke M; Onal S; Telefoncu A
    Prep Biochem Biotechnol; 2006; 36(2):153-63. PubMed ID: 16513559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and immobilization of protease and lipase on chitin-starch material as a novel matrix.
    Mehdi WA; Mehde AA; Özacar M; Özacar Z
    Int J Biol Macromol; 2018 Oct; 117():947-958. PubMed ID: 29807075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies of lipase from Candida rugosa: a comparative study between free and immobilized enzyme onto porous chitosan beads.
    Pereira EB; De Castro HF; De Moraes FF; Zanin GM
    Appl Biochem Biotechnol; 2001; 91-93():739-52. PubMed ID: 11963902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal deactivation of α-amylase immobilized magnetic chitosan and its modified forms: A kinetic and thermodynamic study.
    Bindu VU; Mohanan PV
    Carbohydr Res; 2020 Dec; 498():108185. PubMed ID: 33137584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acrylic fabric and nanomaterials to enhance α-amylase-based biocatalytic immobilized systems for industrial food applications.
    El-Shishtawy RM; Al Angari YM; Alotaibi MM; Almulaiky YQ
    Int J Biol Macromol; 2023 Apr; 233():123539. PubMed ID: 36740122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of chitosan/TiO2 composite beads for improving stability of porcine pancreatic lipase.
    Deveci I; Doğaç YI; Teke M; Mercimek B
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1052-68. PubMed ID: 25359676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of covalent and hydrophobic interactions for α-amylase immobilization on cellulose derivatives.
    Verma NK; Raghav N
    Int J Biol Macromol; 2021 Mar; 174():134-143. PubMed ID: 33428958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advantages of the immobilization of lipase on porous supports over free enzyme.
    Raghuvanshi S; Gupta R
    Protein Pept Lett; 2010 Nov; 17(11):1412-6. PubMed ID: 20423321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.
    Başak E; Aydemir T; Dinçer A; Becerik SÇ
    Artif Cells Nanomed Biotechnol; 2013 Dec; 41(6):408-13. PubMed ID: 23687952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and Covalent Immobilization of Lipase onto Amine Groups Bearing Thiol-Ene Photocured Coatings.
    Çakmakçi E; Muhsir P; Demir S
    Appl Biochem Biotechnol; 2017 Mar; 181(3):1030-1047. PubMed ID: 27704477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde.
    Mo H; Qiu J; Yang C; Zang L; Sakai E; Chen J
    Enzyme Microb Technol; 2020 Aug; 138():109561. PubMed ID: 32527530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Yarrowia lipolytica lipase immobilization yield of entrapment, adsorption, and covalent bond techniques.
    Alloue WA; Destain J; El Medjoub T; Ghalfi H; Kabran P; Thonart P
    Appl Biochem Biotechnol; 2008 Jul; 150(1):51-63. PubMed ID: 18327546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc sulfide-chitosan hybrid nanoparticles as a robust surface for immobilization of Sillago sihama α-amylase.
    Bahri S; Homaei A; Mosaddegh E
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112754. PubMed ID: 35963144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconjugation as a smart immobilization approach for α-amylase enzyme using stimuli-responsive Eudragit-L100 polymer: a robust biocatalyst for applications in pharmaceutical industry.
    Abdel-Mageed HM; Radwan RA; AbuelEzz NZ; Nasser HA; El Shamy AA; Abdelnaby RM; El Gohary NA
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):2361-2368. PubMed ID: 31190563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.