These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38718353)
1. Fluorescence Turn-on Detection of Perfluorooctanoic Acid (PFOA) by Perylene Diimide-Based Metal-Organic Framework. Dalapati R; Hunter M; Sk M; Yang X; Zang L ACS Appl Mater Interfaces; 2024 Jun; 16(25):32344-32356. PubMed ID: 38718353 [TBL] [Abstract][Full Text] [Related]
2. Metal-Organic Framework-Enhanced Solid-Phase Microextraction Mass Spectrometry for the Direct and Rapid Detection of Perfluorooctanoic Acid in Environmental Water Samples. Suwannakot P; Lisi F; Ahmed E; Liang K; Babarao R; Gooding JJ; Donald WA Anal Chem; 2020 May; 92(10):6900-6908. PubMed ID: 32329336 [TBL] [Abstract][Full Text] [Related]
3. Lanthanide metal-organic framework-based surface molecularly imprinted polymers ratiometric fluorescence probe for visual detection of perfluorooctanoic acid with a smartphone-assisted portable device. Yang Y; Liu X; Mu B; Meng S; Mao S; Tao W; Li Z Biosens Bioelectron; 2024 Aug; 257():116330. PubMed ID: 38677022 [TBL] [Abstract][Full Text] [Related]
4. A switchable sensor and scavenger: detection and removal of fluorinated chemical species by a luminescent metal-organic framework. Yin HQ; Tan K; Jensen S; Teat SJ; Ullah S; Hei X; Velasco E; Oyekan K; Meyer N; Wang XY; Thonhauser T; Yin XB; Li J Chem Sci; 2021 Nov; 12(42):14189-14197. PubMed ID: 34760204 [TBL] [Abstract][Full Text] [Related]
5. Visual detection of fluoride based on supramolecular aggregates of perylene diimide in 100% aqueous media. Gao X; Zhang H; Shen Y; Li Y; Xiao K; Xu H; Zhang L; Yao Z Mikrochim Acta; 2021 Sep; 188(10):331. PubMed ID: 34498134 [TBL] [Abstract][Full Text] [Related]
6. Highly Selective and Sensitive Turn-Off-On Fluorescent Probes for Sensing Al Li YP; Zhu XH; Li SN; Jiang YC; Hu MC; Zhai QG ACS Appl Mater Interfaces; 2019 Mar; 11(12):11338-11348. PubMed ID: 30834744 [TBL] [Abstract][Full Text] [Related]
7. Novel ssDNA aptamer-based fluorescence sensor for perfluorooctanoic acid detection in water. Park J; Yang KA; Choi Y; Choe JK Environ Int; 2022 Jan; 158():107000. PubMed ID: 34991260 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent sensor based on solid-phase extraction with negligible depletion: A proof-of-concept study with amines as analytes. Zhang M; Dalapati R; Shi J; Liao C; Tian Q; Wang C; Yang X; Chen S; Porter MD; Zang L Anal Chim Acta; 2023 Mar; 1245():340828. PubMed ID: 36737131 [TBL] [Abstract][Full Text] [Related]
9. Preparation of a fluorinated metal-organic framework and its application for the dispersive solid-phase extraction of perfluorooctanoic acid. Ma SY; Wang J; Fan L; Duan HL; Zhang ZQ J Chromatogr A; 2020 Jan; 1611():460616. PubMed ID: 31630832 [TBL] [Abstract][Full Text] [Related]
10. An erythrosin B-based "turn on" fluorescent sensor for detecting perfluorooctane sulfonate and perfluorooctanoic acid in environmental water samples. Cheng Z; Du L; Zhu P; Chen Q; Tan K Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():281-287. PubMed ID: 29758514 [TBL] [Abstract][Full Text] [Related]
11. A turn-on fluorescent sensor for zinc and cadmium ions based on perylene tetracarboxylic diimide. Liu X; Zhang N; Zhou J; Chang T; Fang C; Shangguan D Analyst; 2013 Feb; 138(3):901-6. PubMed ID: 23211782 [TBL] [Abstract][Full Text] [Related]
12. Selective and Sensitive Fluorescence Turn-On Detection of Cyanide Ions in Water by Post Metallization of a MOF. Mahato D; Fajal S; Samanta P; Mandal W; Ghosh SK Chempluschem; 2022 Jan; 87(1):e202100426. PubMed ID: 34898033 [TBL] [Abstract][Full Text] [Related]
13. Exceptionally High Perfluorooctanoic Acid Uptake in Water by a Zirconium-Based Metal-Organic Framework through Synergistic Chemical and Physical Adsorption. Liang RR; Xu S; Han Z; Yang Y; Wang KY; Huang Z; Rushlow J; Cai P; Samorì P; Zhou HC J Am Chem Soc; 2024 Apr; 146(14):9811-9818. PubMed ID: 38531024 [TBL] [Abstract][Full Text] [Related]
14. Rapid and sensitive detection of dextran sulfate sodium based on supramolecular self-assembly of a perylene diimide derivative in aqueous solution. Zhao Y; Jiang Y; Wang Q; Sun Y; Huang K; Yao Z Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120760. PubMed ID: 34973613 [TBL] [Abstract][Full Text] [Related]
15. Perylene Diimide-Based Fluorescent and Colorimetric Sensors for Environmental Detection. Chen S; Xue Z; Gao N; Yang X; Zang L Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050439 [TBL] [Abstract][Full Text] [Related]
16. Ultrafast and nanomolar level detection of H Ghosh S; Biswas S Dalton Trans; 2021 Sep; 50(33):11631-11639. PubMed ID: 34355723 [TBL] [Abstract][Full Text] [Related]
17. Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range. Hariharan PS; Pitchaimani J; Madhu V; Anthony SP J Fluoresc; 2016 Mar; 26(2):395-401. PubMed ID: 26585348 [TBL] [Abstract][Full Text] [Related]
18. A turn-on fluorescent sensor for pyrophosphate based on the disassembly of Cu2+-mediated perylene diimide aggregates. Feng X; An Y; Yao Z; Li C; Shi G ACS Appl Mater Interfaces; 2012 Feb; 4(2):614-8. PubMed ID: 22220681 [TBL] [Abstract][Full Text] [Related]
19. A Dual-emitting Two-dimensional Nickel-based Metal-organic Framework Nanosheets: Eu Shu Y; Dai T; Ye Q; Jin D; Xu Q; Hu X J Fluoresc; 2021 Nov; 31(6):1947-1957. PubMed ID: 34546469 [TBL] [Abstract][Full Text] [Related]
20. Ratiometric fluorescence sensor based on europium-organic frameworks for selective and quantitative detection of cerium ions. Wang Y; Zheng Y; Huo F; Zhang Q; Yang X; Karmaker PG Anal Chim Acta; 2024 Jan; 1287():342131. PubMed ID: 38182353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]