These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3871839)

  • 1. Effects of high-pressure helium on gamma-[3H]aminobutyric acid release from the isolated frog spinal cord.
    Bichard AR; Little HJ
    J Neurochem; 1985 Apr; 44(4):999-1005. PubMed ID: 3871839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pressure on the release of radioactive glycine and gamma-aminobutyric acid from spinal cord synaptosomes.
    Gilman SC; Colton JS; Dutka AJ
    J Neurochem; 1987 Nov; 49(5):1571-8. PubMed ID: 3668541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pentylenetetrazol and reflex activity of isolated frog spinal cord.
    Davidoff RA; Hackman JC
    Neurology; 1978 May; 28(5):488-94. PubMed ID: 306077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. gamma-Aminobutyric acid efflux from sympathetic glial cells: effect of 'depolarizing' agents.
    Bowery NG; Brown DA; Marsh S
    J Physiol; 1979 Aug; 293():75-101. PubMed ID: 501652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism by which veratridine causes a calcium-independent release of gamma-aminobutyric acid from brain slices.
    Cunningham J; Neal MJ
    Br J Pharmacol; 1981 Jul; 73(3):655-67. PubMed ID: 6166344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of excitatory amino acids on gamma-aminobutyric acid release from frog horizontal cells.
    Cunningham JR; Neal MJ
    J Physiol; 1985 May; 362():51-67. PubMed ID: 3874955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. gamma-Hydroxybutyric acid is not a GABA-mimetic agent in the spinal cord.
    Osorio I; Davidoff RA
    Ann Neurol; 1979 Aug; 6(2):111-6. PubMed ID: 227319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABA 'desensitization' of frog primary afferent fibers.
    Hackman JC; Auslander D; Grayson V; Davidoff RA
    Brain Res; 1982 Dec; 253(1-2):143-52. PubMed ID: 6295548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal.
    Raiteri L; Stigliani S; Patti L; Usai C; Bucci G; Diaspro A; Raiteri M; Bonanno G
    J Neurosci Res; 2005 May; 80(3):424-33. PubMed ID: 15789377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of anaesthetics and high pressure on the responses of the rat superior cervical ganglion in vitro.
    Little HJ; Thomas DL
    J Physiol; 1986 May; 374():387-99. PubMed ID: 3746696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bidirectional movement of gamma-aminobutyric acid in rat spinal cord slices.
    Moscowitz JA; Cutler RW
    J Neurochem; 1980 Dec; 35(6):1394-9. PubMed ID: 7441257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Baclofen and phaclofen modulate GABA release from slices of rat cerebral cortex and spinal cord but not from retina.
    Neal MJ; Shah MA
    Br J Pharmacol; 1989 Sep; 98(1):105-12. PubMed ID: 2804540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+ influx through Ca2+ channels can promote striatal GABA efflux in Ca(2+)-deficient conditions in response to electrical field depolarization.
    Bernath S; Zigmond MJ; Nisenbaum ES; Vizi ES; Berger TW
    Brain Res; 1993 Dec; 632(1-2):232-8. PubMed ID: 8149231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous dorsal root potentials arise from interneuronal activity in the isolated frog spinal cord.
    Ryan GP; Hackman JC; Wohlberg CJ; Davidoff RA
    Brain Res; 1984 Jun; 301(2):331-41. PubMed ID: 6203611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of the uptake and release of [3H]beta-alanine by frog spinal slices.
    Adair R; Davidoff RA
    J Neurochem; 1977 Aug; 29(2):213-20. PubMed ID: 301924
    [No Abstract]   [Full Text] [Related]  

  • 16. The filum terminale of the frog spinal cord, a non transformed preparation: I. Morphology and uptake of gamma-aminobutyric acid.
    Glusman S; Pacheco M; González Robles A; Haber B
    Brain Res; 1979 Aug; 172(2):259-76. PubMed ID: 313835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of electrical stimulation and high potassium concentrations on the effux of (14C) glycine from slices of spinal cord.
    Hopkin J; Neal MJ
    Br J Pharmacol; 1971 Jun; 42(2):215-23. PubMed ID: 4326322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of tolerance to the effects of vigabatrin (gamma-vinyl-GABA) on GABA release from rat cerebral cortex, spinal cord and retina.
    Neal MJ; Shah MA
    Br J Pharmacol; 1990 Jun; 100(2):324-8. PubMed ID: 2379037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABA and glycine transport in frog CNS: high affinity uptake and potassium-evoked release in vitro.
    Davidoff RA; Adair R
    Brain Res; 1976 Dec; 118(3):403-15. PubMed ID: 12856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substance P provoked gamma-aminobutyric acid release from the myenteric plexus of the guinea-pig small intestine.
    Tanaka C; Taniyama K
    J Physiol; 1985 May; 362():319-29. PubMed ID: 2410602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.