These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3871839)

  • 41. Anesthetics affect the uptake but not the depolarization-evoked release of GABA in rat striatal synaptosomes.
    Mantz J; Lecharny JB; Laudenbach V; Henzel D; Peytavin G; Desmonts JM
    Anesthesiology; 1995 Feb; 82(2):502-11. PubMed ID: 7856908
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro.
    Bosley TM; Woodhams PL; Gordon RD; Balázs R
    J Neurochem; 1983 Jan; 40(1):189-201. PubMed ID: 6129287
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gamma-aminobutyric acid is released in the dorsal horn by electrical spinal cord stimulation: an in vivo microdialysis study in the rat.
    Linderoth B; Stiller CO; Gunasekera L; O'Connor WT; Ungerstedt U; Brodin E
    Neurosurgery; 1994 Mar; 34(3):484-8; discussion 488-9. PubMed ID: 8190224
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The interaction of porphyrin precursors with GABA receptors in the isolated frog spinal cord.
    Nicoll RA
    Life Sci; 1976 Aug; 19(4):521-5. PubMed ID: 1085395
    [No Abstract]   [Full Text] [Related]  

  • 45. Release of [3H]- and endogenous GABA from slices of the rat medulla oblongata: modification by 3-mercaptopropionic acid, nipecotic acid and diaminobutyric acid.
    Kihara M; Amano H; Misu Y; Kubo T
    Arch Int Pharmacodyn Ther; 1989; 298():50-60. PubMed ID: 2757467
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drug-induced changes in the electrically evoked release of 3H- -aminobutyric acid (3H-GABA) from spinal cord.
    Collins GG
    Br J Pharmacol; 1973 Mar; 47(3):641P. PubMed ID: 4730855
    [No Abstract]   [Full Text] [Related]  

  • 47. The neuropharmacology of a novel gamma-aminobutyric acid analog, kojic amine.
    Yarbrough GG; Williams M; Haubrich DR
    Arch Int Pharmacodyn Ther; 1979 Oct; 241(2):266-79. PubMed ID: 118713
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The presynaptic effects of valproic acid in the isolated frog spinal cord.
    Hackman JC; Grayson V; Davidoff RA
    Brain Res; 1981 Sep; 220(2):269-85. PubMed ID: 6116514
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Halothane and isoflurane differentially affect the regulation of dopamine and gamma-aminobutyric acid release mediated by presynaptic acetylcholine receptors in the rat striatum.
    Salord F; Keita H; Lecharny JB; Henzel D; Desmonts JM; Mantz J
    Anesthesiology; 1997 Mar; 86(3):632-41. PubMed ID: 9066330
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decreased release of D-aspartate in the guinea pig spinal cord after lesions of the red nucleus.
    Benson CG; Chase MC; Potashner SJ
    J Neurochem; 1991 Apr; 56(4):1174-83. PubMed ID: 2002335
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glutamate receptor agonists release [3H]GABA preferentially from horizontal cells.
    Moran J; Pasantes-Morales H; Redburn DA
    Brain Res; 1986 Nov; 398(2):276-87. PubMed ID: 2879608
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Release of [3H]D-aspartate induced by K+-stimulation is increased in the cervical spinal cord of the wobbler mouse: a model of motor neuron disease.
    Bonanno G; Fumagalli E; Milanese M; Zappettini S; Mennini T
    Neurochem Int; 2009 Sep; 55(5):302-6. PubMed ID: 19576518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Descending fibre-mediated release of endogenous glutamate and glycine from the perfused cat spinal cord in vivo.
    Fagg GE; Jordan CC; Webster RA
    Brain Res; 1978 Dec; 158(1):159-70. PubMed ID: 21348358
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium-independent gamma-aminobutyric acid release from growth cones: role of gamma-aminobutyric acid transport.
    Taylor J; Gordon-Weeks PR
    J Neurochem; 1991 Jan; 56(1):273-80. PubMed ID: 1987321
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence supporting the indirect depolarization of primary afferent terminals in the frog by excitatory amino acids.
    Evans RH
    J Physiol; 1980 Jan; 298():25-35. PubMed ID: 6965722
    [TBL] [Abstract][Full Text] [Related]  

  • 56. gamma-Aminobutyric acid release from synaptosomes as influenced by Ca2+ and Ca2+ channel blockers.
    Carvalho CM; Santos SV; Carvalho AP
    Eur J Pharmacol; 1986 Nov; 131(1):1-12. PubMed ID: 3816939
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition by yohimbine of the calcium-dependent evoked release of [3H]GABA in rat and mouse brain slices in vitro.
    Maurin Y; Arbilla S; Langer SZ
    Eur J Pharmacol; 1985 Apr; 111(1):37-48. PubMed ID: 2990943
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition by apomorphine of the potassium-evoked release of [3H]-gamma-aminobutyric acid from the rat substantia nigra in vitro.
    Arbilla S; Kamal LA; Langer SZ
    Br J Pharmacol; 1981 Oct; 74(2):389-97. PubMed ID: 7317688
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Release of 3H-gamma-aminobutyric acid (GABA) by inhibitory neurons of the crayfish.
    Craelius W; Fricke RA
    J Neurobiol; 1981 May; 12(3):249-58. PubMed ID: 7276925
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gamma-aminobutyrylcholine and GABA receptors on primary afferents in the frog spinal cord.
    Nicoll RA
    J Pharm Pharmacol; 1975 Jul; 27(7):529-31. PubMed ID: 239160
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.