These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38718578)
1. High-strength, anti-fatigue, cellulose nanofiber reinforced polyvinyl alcohol based ionic conductive hydrogels for flexible strain/pressure sensors and triboelectric nanogenerators. Li Y; Ren P; Sun Z; Xue R; Ding D; Tian W; Ren F; Jin Y; Chen Z; Zhu G J Colloid Interface Sci; 2024 Sep; 669():248-257. PubMed ID: 38718578 [TBL] [Abstract][Full Text] [Related]
2. An environmentally tolerant, highly stable, cellulose nanofiber-reinforced, conductive hydrogel multifunctional sensor. Li M; Chen D; Sun X; Xu Z; Yang Y; Song Y; Jiang F Carbohydr Polym; 2022 May; 284():119199. PubMed ID: 35287914 [TBL] [Abstract][Full Text] [Related]
3. One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Hu J; Wu Y; Yang Q; Zhou Q; Hui L; Liu Z; Xu F; Ding D Carbohydr Polym; 2022 Jan; 275():118697. PubMed ID: 34742424 [TBL] [Abstract][Full Text] [Related]
4. A highly sensitive and anti-freezing conductive strain sensor based on polypyrrole/cellulose nanofiber crosslinked polyvinyl alcohol hydrogel for human motion detection. Liu X; Shi H; Song F; Yang W; Yang B; Ding D; Liu Z; Hui L; Zhang F Int J Biol Macromol; 2024 Feb; 257(Pt 2):128800. PubMed ID: 38101658 [TBL] [Abstract][Full Text] [Related]
5. Mussel-inspired cellulose nanofiber/poly(vinyl alcohol) hydrogels with robustness, self-adhesion and antimicrobial activity for strain sensors. Zhang R; Yang A; Yang Y; Zhu Y; Song Y; Li Y; Li J Int J Biol Macromol; 2023 Aug; 245():125469. PubMed ID: 37343611 [TBL] [Abstract][Full Text] [Related]
6. Facile fabrication of strong and conductive cellulose hydrogels with wide temperature tolerance for flexible sensors. Shu L; Zhang XF; Wu Y; Wang Z; Yao J Int J Biol Macromol; 2023 Jun; 240():124438. PubMed ID: 37060973 [TBL] [Abstract][Full Text] [Related]
7. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. Huang F; Wei W; Fan Q; Li L; Zhao M; Zhou Z J Colloid Interface Sci; 2022 Jun; 615():215-226. PubMed ID: 35131502 [TBL] [Abstract][Full Text] [Related]
8. A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors. Zhang Y; Ren E; Li A; Cui C; Guo R; Tang H; Xiao H; Zhou M; Qin W; Wang X; Liu L J Mater Chem B; 2021 Jan; 9(3):719-730. PubMed ID: 33306084 [TBL] [Abstract][Full Text] [Related]
9. Single-Electrode Triboelectric Nanogenerators Based on Ionic Conductive Hydrogel for Mechanical Energy Harvester and Smart Touch Sensor Applications. Patnam H; Graham SA; Manchi P; Paranjape MV; Yu JS ACS Appl Mater Interfaces; 2023 Apr; 15(13):16768-16777. PubMed ID: 36973637 [TBL] [Abstract][Full Text] [Related]
10. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports. Lei T; Pan J; Wang N; Xia Z; Zhang Q; Fan J; Tao L; Shou W; Gao Y Mater Horiz; 2024 Mar; 11(5):1234-1250. PubMed ID: 38131412 [TBL] [Abstract][Full Text] [Related]
11. A Facile One-Pot Preparation and Properties of Nanocellulose-Reinforced Ionic Conductive Hydrogels. Huang X; Wang Y; Wang Y; Yang L Molecules; 2023 Jan; 28(3):. PubMed ID: 36770969 [TBL] [Abstract][Full Text] [Related]
12. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232 [TBL] [Abstract][Full Text] [Related]
13. Dual-network polyvinyl alcohol/polyacrylamide/xanthan gum ionic conductive hydrogels for flexible electronic devices. Zhou Y; Zhang L; Lin X; Lu J; Huang Z; Sun P; Zhang Y; Xu X; Li Q; Liu H Int J Biol Macromol; 2023 Apr; 233():123573. PubMed ID: 36754269 [TBL] [Abstract][Full Text] [Related]
14. Polyvinyl Alcohol/Graphene Oxide Conductive Hydrogels via the Synergy of Freezing and Salting Out for Strain Sensors. Wei J; Wang R; Pan F; Fu Z Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458997 [TBL] [Abstract][Full Text] [Related]
15. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H; Lin N; He Y; Zuo B ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080 [TBL] [Abstract][Full Text] [Related]
16. Self-strengthening and conductive cellulose composite hydrogel for high sensitivity strain sensor and flexible triboelectric nanogenerator. Sun W; Liu X; Hua W; Wang S; Wang S; Yu J; Wang J; Yong Q; Chu F; Lu C Int J Biol Macromol; 2023 Sep; 248():125900. PubMed ID: 37481191 [TBL] [Abstract][Full Text] [Related]
17. Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Hu Y; Zhang M; Qin C; Qian X; Zhang L; Zhou J; Lu A Carbohydr Polym; 2021 Aug; 265():118078. PubMed ID: 33966842 [TBL] [Abstract][Full Text] [Related]
18. Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor. Li M; Tu Q; Long X; Zhang Q; Jiang H; Chen C; Wang S; Min D Int J Biol Macromol; 2021 Jan; 166():1526-1534. PubMed ID: 33181212 [TBL] [Abstract][Full Text] [Related]
19. Ultrastrong and Tough Urushiol-Based Ionic Conductive Double Network Hydrogels as Flexible Strain Sensors. Lin F; Zhu Y; You Z; Li W; Chen J; Zheng X; Zheng G; Song Z; You X; Xu Y Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571113 [TBL] [Abstract][Full Text] [Related]
20. Low-temperature strain-sensitive sensor based on cellulose-based ionic conductive hydrogels with moldable and self-healing properties. Chen M; Quan Q; You Z; Dong Y; Zhou X Int J Biol Macromol; 2023 Dec; 253(Pt 6):127396. PubMed ID: 37827399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]