These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38718601)

  • 41. Forest fires and climate-induced tree range shifts in the western US.
    Hill AP; Field CB
    Nat Commun; 2021 Nov; 12(1):6583. PubMed ID: 34782624
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Local forest structure variability increases resilience to wildfire in dry western U.S. coniferous forests.
    Koontz MJ; North MP; Werner CM; Fick SE; Latimer AM
    Ecol Lett; 2020 Mar; 23(3):483-494. PubMed ID: 31922344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.
    Larson AJ; Belote RT; Cansler CA; Parks SA; Dietz MS
    Ecol Appl; 2013 Sep; 23(6):1243-9. PubMed ID: 24147398
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.
    Harvey JE; Smith DJ; Veblen TT
    Ecol Appl; 2017 Sep; 27(6):1746-1760. PubMed ID: 28434190
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.
    Brando PM; Oliveria-Santos C; Rocha W; Cury R; Coe MT
    Glob Chang Biol; 2016 Jul; 22(7):2516-25. PubMed ID: 26750627
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest.
    Slik JW; Bernard CS; Van Beek M; Breman FC; Eichhorn KA
    Oecologia; 2008 Dec; 158(3):579-88. PubMed ID: 18839212
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.
    Sherriff RL; Platt RV; Veblen TT; Schoennagel TL; Gartner MH
    PLoS One; 2014; 9(9):e106971. PubMed ID: 25251103
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bark production of generalist and specialist species across savannas and forests in the Cerrado.
    Chiminazzo MA; Bombo AB; Charles-Dominique T; Fidelis A
    Ann Bot; 2023 Apr; 131(4):613-621. PubMed ID: 36651635
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Solutions to fire and shade: resprouting, growing tall and the origin of Eurasian temperate broadleaved forest.
    Adie H; Lawes MJ
    Biol Rev Camb Philos Soc; 2023 Apr; 98(2):643-661. PubMed ID: 36444419
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.
    Glassman SI; Levine CR; DiRocco AM; Battles JJ; Bruns TD
    ISME J; 2016 May; 10(5):1228-39. PubMed ID: 26473720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thinning and plantation of resprouting species redirect overstocked pine stands towards more functional communities in the Mediterranean basin.
    Moghli A; Santana VM; Soliveres S; Baeza MJ
    Sci Total Environ; 2022 Feb; 806(Pt 3):150715. PubMed ID: 34610406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental seed sowing reveals seedling recruitment vulnerability to unseasonal fire.
    Miller RG; Fontaine JB; Merritt DJ; Miller BP; Enright NJ
    Ecol Appl; 2021 Oct; 31(7):e02411. PubMed ID: 34255387
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Forest floor depth mediates understory vigor in xeric Pinus palustris ecosystems.
    Hiers JK; O'Brien JJ; Will RE; Mitchell RJ
    Ecol Appl; 2007 Apr; 17(3):806-14. PubMed ID: 17494398
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regeneration strategies and forest resilience to changing fire regimes: Insights from a Goldilocks model.
    Ramiadantsoa T; Ratajczak Z; Turner MG
    Ecology; 2023 Jun; 104(6):e4041. PubMed ID: 36964987
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost.
    Köster E; Köster K; Berninger F; Prokushkin A; Aaltonen H; Zhou X; Pumpanen J
    J Environ Manage; 2018 Dec; 228():405-415. PubMed ID: 30243076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aboveground forest carbon shows different responses to fire frequency in harvested and unharvested forests.
    Collins L; Bradstock R; Ximenes F; Horsey B; Sawyer R; Penman T
    Ecol Appl; 2019 Jan; 29(1):e01815. PubMed ID: 30326546
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Seedling performance covaries with dormancy thresholds: maintaining cryptic seed heteromorphism in a fire-prone system.
    Liyanage GS; Ayre DJ; Ooi MK
    Ecology; 2016 Nov; 97(11):3009-3018. PubMed ID: 27870036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers.
    Hansen WD; Braziunas KH; Rammer W; Seidl R; Turner MG
    Ecology; 2018 Apr; 99(4):966-977. PubMed ID: 29464688
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Paleoecology provides context for conserving culturally and ecologically important pine forest and barrens communities.
    Booth RK; Schuurman GW; Lynch EA; Huff MG; Bebout JA; Montano NM
    Ecol Appl; 2023 Sep; 33(6):e2901. PubMed ID: 37334723
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.
    Hood SM; Baker S; Sala A
    Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.