These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3871863)

  • 1. Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos.
    Roberts A; Patton DT
    J Neurosci Res; 1985; 13(1-2):23-38. PubMed ID: 3871863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The early development of the primary sensory neurones in an amphibian embryo: a scanning electron microscope study.
    Taylor JS; Roberts A
    J Embryol Exp Morphol; 1983 Jun; 75():49-66. PubMed ID: 6886616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of the growth cones of developing embryonic sensory neurites.
    Roberts A; Taylor JS
    J Embryol Exp Morphol; 1983 Jun; 75():31-47. PubMed ID: 6886615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal growth cones in the developing amphibian spinal cord.
    Nordlander RH
    J Comp Neurol; 1987 Sep; 263(4):485-96. PubMed ID: 3667985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scanning electron microscope study of the development of a peripheral sensory neurite network.
    Roberts A; Taylor JS
    J Embryol Exp Morphol; 1982 Jun; 69():237-50. PubMed ID: 7119669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth cones and axon trajectories of a sensory pathway in the amphibian spinal cord.
    Nordlander RH; Gazzerro JW; Cook H
    J Comp Neurol; 1991 May; 307(4):539-48. PubMed ID: 1869630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis.
    Lamborghini JE
    J Comp Neurol; 1987 Oct; 264(1):47-55. PubMed ID: 3680623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological response of extending spinal neuritic growth cones to peripheral target tissue.
    Somasekhar T; Pollack ED
    J Comp Neurol; 1992 Dec; 326(2):314-26. PubMed ID: 1479077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An essential role of the neuronal cell adhesion molecule contactin in development of the Xenopus primary sensory system.
    Fujita N; Saito R; Watanabe K; Nagata S
    Dev Biol; 2000 May; 221(2):308-20. PubMed ID: 10790328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of the peripheral trigeminal innervation in Xenopus embryos.
    Davies SN; Kitson DL; Roberts A
    J Embryol Exp Morphol; 1982 Aug; 70():215-24. PubMed ID: 7142898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skin impulse excitation of spinal sensory neurons in developing Xenopus laevis (Daudin) tadpoles.
    James LJ; Soffe SR
    J Exp Biol; 2011 Oct; 214(Pt 20):3341-50. PubMed ID: 21957097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observations of vascularization in the spinal cord of mouse embryos, with special reference to development of boundary membranes and perivascular spaces.
    Nakao T; Ishizawa A; Ogawa R
    Anat Rec; 1988 Jun; 221(2):663-77. PubMed ID: 3414988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central synapses of spinal motoneurons innervating the trunk swimming muscles of Xenopus laevis embryos.
    Roberts A; Walford A
    Acta Biol Hung; 1996; 47(1-4):371-84. PubMed ID: 9124006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of amphibian somite morphogenesis: cell rearrangement patterns during rosette formation and myoblast fusion.
    Youn BW; Malacinski GM
    J Embryol Exp Morphol; 1981 Dec; 66():1-26. PubMed ID: 7338706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ipsi- and contralateral commissural growth cones react differently to the cellular environment of the ventral zebrafish spinal cord.
    Bernhardt RR
    J Comp Neurol; 1994 Dec; 350(1):122-32. PubMed ID: 7860796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vitro model of the rat dorsal root entry zone reveals developmental changes in the extent of sensory axon growth into the spinal cord.
    Golding JP; Shewan D; Berry M; Cohen J
    Mol Cell Neurosci; 1996 Mar; 7(3):191-203. PubMed ID: 8726103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maturation of neurites in mixed cultures of spinal cord neurons and muscle cells from Xenopus laevis embryos followed with antibodies to neurofilament proteins.
    Lin W; Szaro BG
    J Neurobiol; 1994 Oct; 25(10):1235-48. PubMed ID: 7815056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific pathway selection by the early projections of individual peripheral sensory neurons in the embryonic medicinal leech.
    Jellies J; Johansen K; Johansen J
    J Neurobiol; 1994 Oct; 25(10):1187-99. PubMed ID: 7815053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Close spatial-temporal relationship between islet-1-expressing cells and growing primary afferent axons in the dorsal spinal cord of chick embryo.
    Shiga T; Oppenheim RW
    J Comp Neurol; 1999 Mar; 405(3):388-93. PubMed ID: 10076933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study.
    Harper CE; Roberts A
    Philos Trans R Soc Lond B Biol Sci; 1993 Apr; 340(1291):141-60. PubMed ID: 8099742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.