These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38718784)

  • 1. Thermal damage to the skin from 8.2 and 95 GHz microwave exposures in swine.
    Parker JE; Butterworth JW; Rodriguez RA; Kowalczewski CJ; Christy RJ; Voorhees WB; Payne JA; Whitmore JN
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38718784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature and burn injury prediction of human skin exposed to microwaves: a model analysis.
    Ozen S; Helhel S; Bilgin S
    Radiat Environ Biophys; 2011 Aug; 50(3):483-9. PubMed ID: 21533655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of microwave radiation on living tissues.
    Surrell JA; Alexander RC; Cohle SD; Lovell FR; Wehrenberg RA
    J Trauma; 1987 Aug; 27(8):935-9. PubMed ID: 3612872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation of the dielectric properties of tissues with age: the effect on the values of SAR in children when exposed to walkie-talkie devices.
    Peyman A; Gabriel C; Grant EH; Vermeeren G; Martens L
    Phys Med Biol; 2009 Jan; 54(2):227-41. PubMed ID: 19088390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-temperature Thresholds and Safety Factors for Thermal Hazards from Radiofrequency Energy above 6 GHz.
    Foster KR; Ziskin MC; Balzano Q
    Health Phys; 2021 Sep; 121(3):234-247. PubMed ID: 34261892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic simulation of RF burn injuries occurring at skin-skin and skin-bore wall contact points in an MRI scanner with a birdcage coil.
    Tang M; Okamoto K; Haruyama T; Yamamoto T
    Phys Med; 2021 Feb; 82():219-227. PubMed ID: 33657471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The progression of burn depth in experimental burns: a histological and methodological study.
    Papp A; Kiraly K; Härmä M; Lahtinen T; Uusaro A; Alhava E
    Burns; 2004 Nov; 30(7):684-90. PubMed ID: 15475143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can microwave/radiofrequency radiation (RFR) burns be distinguished from conventional burns?
    Budd RA
    J Microw Power Electromagn Energy; 1985; 20(1):9-11. PubMed ID: 3847509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells (ADRCs) in the treatment of severe thermal burns using a porcine model.
    Foubert P; Liu M; Anderson S; Rajoria R; Gutierrez D; Zafra D; Tenenhaus M; Fraser JK
    Burns; 2018 Sep; 44(6):1531-1542. PubMed ID: 29958745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in Understanding Radiofrequency Heating and Burn Injuries for Safer MR Imaging.
    Tang M; Yamamoto T
    Magn Reson Med Sci; 2023 Jan; 22(1):7-25. PubMed ID: 35228437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel burn device for rapid, reproducible burn wound generation.
    Kim JY; Dunham DM; Supp DM; Sen CK; Powell HM
    Burns; 2016 Mar; 42(2):384-91. PubMed ID: 26803369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a porcine deep partial thickness burn model.
    Gaines C; Poranki D; Du W; Clark RA; Van Dyke M
    Burns; 2013 Mar; 39(2):311-9. PubMed ID: 22981797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative assessment of burn injury in porcine skin with high-frequency ultrasonic imaging.
    Brink JA; Sheets PW; Dines KA; Etchison MR; Hanke CW; Sadove AM
    Invest Radiol; 1986 Aug; 21(8):645-51. PubMed ID: 3528037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite-element model predicts thermal damage in cutaneous contact burns.
    Orgill DP; Solari MG; Barlow MS; O'Connor NE
    J Burn Care Rehabil; 1998; 19(3):203-9. PubMed ID: 9622462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antecedent thermal injury worsens split-thickness skin graft quality: A clinically relevant porcine model of full-thickness burn, excision and grafting.
    Carlsson AH; Rose LF; Fletcher JL; Wu JC; Leung KP; Chan RK
    Burns; 2017 Feb; 43(1):223-231. PubMed ID: 27600980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creation of rapid and reproducible burn in animal model with a newly developed burn device.
    Shukla SK; Sharma AK; Shaw P; Kalonia A; Yashavarddhan MH; Singh S
    Burns; 2020 Aug; 46(5):1142-1149. PubMed ID: 32169381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heating and pain sensation produced in human skin by millimeter waves: comparison to a simple thermal model.
    Walters TJ; Blick DW; Johnson LR; Adair ER; Foster KR
    Health Phys; 2000 Mar; 78(3):259-67. PubMed ID: 10688448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of microwave radiation on transdermal delivery systems.
    Moseley H; Johnston S; Allen A
    Br J Dermatol; 1990 Mar; 122(3):361-3. PubMed ID: 2322499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver.
    Andreano A; Brace CL
    Cardiovasc Intervent Radiol; 2013 Apr; 36(2):505-11. PubMed ID: 22572764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study of temperature rise in RF irradiation during MR imaging: measurement of local temperature using a loop phantom].
    Yamazaki M; Yamada E; Kudou S; Higashida M
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2005 Aug; 61(8):1125-32. PubMed ID: 16132030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.