These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38718798)

  • 21. Neural sensitivity to interaural time differences: beyond the Jeffress model.
    Fitzpatrick DC; Kuwada S; Batra R
    J Neurosci; 2000 Feb; 20(4):1605-15. PubMed ID: 10662850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues.
    Schadwinkel S; Gutschalk A
    Cereb Cortex; 2010 Dec; 20(12):2863-73. PubMed ID: 20237241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated processing of spatial cues in human auditory cortex.
    Salminen NH; Takanen M; Santala O; Lamminsalo J; Altoè A; Pulkki V
    Hear Res; 2015 Sep; 327():143-52. PubMed ID: 26074304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography.
    Altmann CF; Ueda R; Bucher B; Furukawa S; Ono K; Kashino M; Mima T; Fukuyama H
    Neuroimage; 2017 Oct; 159():185-194. PubMed ID: 28756239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The neural code for auditory space depends on sound frequency and head size in an optimal manner.
    Harper NS; Scott BH; Semple MN; McAlpine D
    PLoS One; 2014; 9(11):e108154. PubMed ID: 25372405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Independent or integrated processing of interaural time and level differences in human auditory cortex?
    Altmann CF; Terada S; Kashino M; Goto K; Mima T; Fukuyama H; Furukawa S
    Hear Res; 2014 Jun; 312():121-7. PubMed ID: 24709274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The opponent channel population code of sound location is an efficient representation of natural binaural sounds.
    Młynarski W
    PLoS Comput Biol; 2015 May; 11(5):e1004294. PubMed ID: 25996373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Natural ITD statistics predict human auditory spatial perception.
    Pavão R; Sussman ES; Fischer BJ; Peña JL
    Elife; 2020 Oct; 9():. PubMed ID: 33043884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bilateral cochlear implants in children: Effects of auditory experience and deprivation on auditory perception.
    Litovsky RY; Gordon K
    Hear Res; 2016 Aug; 338():76-87. PubMed ID: 26828740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Population coding of interaural time differences in gerbils and barn owls.
    Lesica NA; Lingner A; Grothe B
    J Neurosci; 2010 Sep; 30(35):11696-702. PubMed ID: 20810890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs.
    Kettler L; Carr CE
    J Neurosci; 2019 May; 39(20):3882-3896. PubMed ID: 30886018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rate dependent neural responses of interaural-time-difference cues in fine-structure and envelope.
    Hu H; Ewert SD; Kollmeier B; Vickers D
    PeerJ; 2024; 12():e17104. PubMed ID: 38680894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Representation of Interaural Time Differences in High-Frequency Auditory Cortex.
    Moshitch D; Nelken I
    Cereb Cortex; 2016 Feb; 26(2):656-68. PubMed ID: 25260704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sound localization.
    Middlebrooks JC
    Handb Clin Neurol; 2015; 129():99-116. PubMed ID: 25726265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of Sound Localization in Two Functionally Distinct Regions of the Auditory Cortex.
    Razak KA; Yarrow S; Brewton D
    J Neurosci; 2015 Dec; 35(49):16105-15. PubMed ID: 26658863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques.
    Scott BH; Malone BJ; Semple MN
    J Neurophysiol; 2009 Apr; 101(4):1781-99. PubMed ID: 19164111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural Decoding of Bistable Sounds Reveals an Effect of Intention on Perceptual Organization.
    Billig AJ; Davis MH; Carlyon RP
    J Neurosci; 2018 Mar; 38(11):2844-2853. PubMed ID: 29440556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large group differences in binaural sensitivity are represented in preattentive responses from auditory cortex.
    Lertpoompunya A; Ozmeral EJ; Higgins NC; Eddins AC; Eddins DA
    J Neurophysiol; 2022 Mar; 127(3):660-672. PubMed ID: 35108112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human cortical representation of virtual auditory space: differences between sound azimuth and elevation.
    Fujiki N; Riederer KA; Jousmäki V; Mäkelä JP; Hari R
    Eur J Neurosci; 2002 Dec; 16(11):2207-13. PubMed ID: 12473088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.