These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38718901)

  • 21. Motor imagery EEG classification based on ensemble support vector learning.
    Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J
    Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Generalizable Brain-Computer Interface (BCI) Using Machine Learning for Feature Discovery.
    Nurse ES; Karoly PJ; Grayden DB; Freestone DR
    PLoS One; 2015; 10(6):e0131328. PubMed ID: 26114954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
    Bundy DT; Pahwa M; Szrama N; Leuthardt EC
    J Neural Eng; 2016 Apr; 13(2):026021. PubMed ID: 26902372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of MI-BCI classification method based on the Riemannian transform of personalized EEG spatiotemporal features.
    Ding X; Yang L; Li C
    Math Biosci Eng; 2023 May; 20(7):12454-12471. PubMed ID: 37501450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dynamic and self-adaptive classification algorithm for motor imagery EEG signals.
    Belwafi K; Gannouni S; Aboalsamh H; Mathkour H; Belghith A
    J Neurosci Methods; 2019 Nov; 327():108346. PubMed ID: 31421162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A performance based feature selection technique for subject independent MI based BCI.
    Joadder MAM; Myszewski JJ; Rahman MH; Wang I
    Health Inf Sci Syst; 2019 Dec; 7(1):15. PubMed ID: 31428313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain computer interfaces, a review.
    Nicolas-Alonso LF; Gomez-Gil J
    Sensors (Basel); 2012; 12(2):1211-79. PubMed ID: 22438708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards predicting ECoG-BCI performance: assessing the potential of scalp-EEG
    Fahimi Hnazaee M; Verwoert M; Freudenburg ZV; van der Salm SMA; Aarnoutse EJ; Leinders S; Van Hulle MM; Ramsey NF; Vansteensel MJ
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35931055
    [No Abstract]   [Full Text] [Related]  

  • 30. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.
    Mahmoudi M; Shamsi M
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):957-972. PubMed ID: 30338495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel method for classification of multi-class motor imagery tasks based on feature fusion.
    Hou Y; Chen T; Lun X; Wang F
    Neurosci Res; 2022 Mar; 176():40-48. PubMed ID: 34508756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensor Modalities for Brain-Computer Interface Technology: A Comprehensive Literature Review.
    Martini ML; Oermann EK; Opie NL; Panov F; Oxley T; Yaeger K
    Neurosurgery; 2020 Feb; 86(2):E108-E117. PubMed ID: 31361011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The current state of electrocorticography-based brain-computer interfaces.
    Miller KJ; Hermes D; Staff NP
    Neurosurg Focus; 2020 Jul; 49(1):E2. PubMed ID: 32610290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fractal Dimension as a discriminative feature for high accuracy classification in motor imagery EEG-based brain-computer interface.
    Moaveninejad S; D'Onofrio V; Tecchio F; Ferracuti F; Iarlori S; Monteriù A; Porcaro C
    Comput Methods Programs Biomed; 2024 Feb; 244():107944. PubMed ID: 38064955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing Classification Accuracy with Integrated Contextual Gate Network: Deep Learning Approach for Functional Near-Infrared Spectroscopy Brain-Computer Interface Application.
    Akhter J; Naseer N; Nazeer H; Khan H; Mirtaheri P
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain-Computer Interface: Advancement and Challenges.
    Mridha MF; Das SC; Kabir MM; Lima AA; Islam MR; Watanobe Y
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concurrent control of a brain-computer interface and natural overt movements.
    Bashford L; Wu J; Sarma D; Collins K; Rao RPN; Ojemann JG; Mehring C
    J Neural Eng; 2018 Dec; 15(6):066021. PubMed ID: 30303130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-scale self-attention approach for analysing motor imagery signals in brain-computer interfaces.
    Bhatt MW; Sharma S
    J Neurosci Methods; 2024 Aug; 408():110182. PubMed ID: 38795979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications.
    Pahwa M; Kusner M; Hacker CD; Bundy DT; Weinberger KQ; Leuthardt EC
    PLoS One; 2015; 10(11):e0142947. PubMed ID: 26562013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.