These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38718905)

  • 21. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.
    Liu X; Zhang B; Fei B; Chen X; Zhang J; Mu X
    Faraday Discuss; 2017 Sep; 202():79-98. PubMed ID: 28650491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step Conversion of Furfural into 2-Methyltetrahydrofuran under Mild Conditions.
    Dong F; Zhu Y; Ding G; Cui J; Li X; Li Y
    ChemSusChem; 2015 May; 8(9):1534-7. PubMed ID: 25873007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical transformations of glucose to value added products using Cu-based catalytic systems.
    Yepez A; Pineda A; Garcia A; Romero AA; Luque R
    Phys Chem Chem Phys; 2013 Aug; 15(29):12165-72. PubMed ID: 23703022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrogen-doped ordered mesoporous carbon supported ruthenium metallic nanoparticles: Opportunity for efficient hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran by catalytic transfer hydrogenation.
    Buta JG; Dame B; Ayala T
    Heliyon; 2024 Mar; 10(5):e26690. PubMed ID: 38455557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon.
    Jae J; Zheng W; Lobo RF; Vlachos DG
    ChemSusChem; 2013 Jul; 6(7):1158-62. PubMed ID: 23754805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrodeoxygenation of furfural to 2-methylfuran over Cu-Co confined by hollow carbon cage catalyst enhanced by optimized charge transfer and alloy structure.
    Dou S; Ma L; Dong Y; Zhu Q; Kong X
    J Colloid Interface Sci; 2024 Jun; 663():345-357. PubMed ID: 38412720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafine Ruthenium Clusters Shell-Embedded Hollow Carbon Spheres as Nanoreactors for Channel Microenvironment-Modulated Furfural Tandem Hydrogenation.
    Yu Z; Ji N; Xiong J; Han Y; Li X; Zhang R; Qiao Y; Zhang M; Lu X
    Small; 2022 Aug; 18(32):e2201361. PubMed ID: 35760757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Co-Doping on Cu/CaO Catalysts for Selective Furfural Hydrogenation into Furfuryl Alcohol.
    Kalong M; Ratchahat S; Khemthong P; Assabumrungrat S; Srifa A
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing electrosynthetic reactions with furfural on copper surfaces.
    Li J; Kornienko N
    Chem Commun (Camb); 2021 May; 57(42):5127-5130. PubMed ID: 33899065
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leveraging Cu/CuFe
    Koley P; Chandra Shit S; Joseph B; Pollastri S; Sabri YM; Mayes ELH; Nakka L; Tardio J; Mondal J
    ACS Appl Mater Interfaces; 2020 May; 12(19):21682-21700. PubMed ID: 32314915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides.
    Kumalaputri AJ; Bottari G; Erne PM; Heeres HJ; Barta K
    ChemSusChem; 2014 Aug; 7(8):2266-75. PubMed ID: 24924637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conversion of Xylose to Furfuryl Alcohol and 2-Methylfuran in a Continuous Fixed-Bed Reactor.
    Cui J; Tan J; Cui X; Zhu Y; Deng T; Ding G; Li Y
    ChemSusChem; 2016 Jun; 9(11):1259-62. PubMed ID: 27120138
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Pan G; Cheng S; Zhang Y; Chen Y; Xu X; Xu J
    Chem Commun (Camb); 2023 Mar; 59(22):3301-3304. PubMed ID: 36846958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper Nanoparticles Supported on ZIF-8: Comparison of Cu(II) Reduction Processes and Application as Benzyl Alcohol Oxidation Catalysts.
    Zan Y; Ben Romdhane F; Miche A; Méthivier C; Krafft JM; Jolivalt C; Reboul J
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38716-38728. PubMed ID: 37523484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective hydrogenolysis of raw glycerol to 1,2-propanediol over Cu-ZnO catalysts in fixed-bed reactor.
    Gao Q; Xu B; Tong Q; Fan Y
    Biosci Biotechnol Biochem; 2016; 80(2):215-20. PubMed ID: 26428060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromium-free Cu@Mg/γ-Al
    Arundhathi R; Reddy PL; Samanta C; Newalkar BL
    RSC Adv; 2020 Nov; 10(67):41120-41126. PubMed ID: 35519200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cu/SiO
    Zong Z; Tan H; Zhang P; Yuan C; Zhao R; Song F; Yi W; Zhang F; Cui H
    Phys Chem Chem Phys; 2023 Sep; 25(36):24377-24385. PubMed ID: 37681280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermochemistry and kinetic analysis for the conversion of furfural to valuable added products.
    Pino N; López D; Espinal JF
    J Mol Model; 2019 Jan; 25(1):26. PubMed ID: 30612236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-step hydrogenation-esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading.
    Yu W; Tang Y; Mo L; Chen P; Lou H; Zheng X
    Bioresour Technol; 2011 Sep; 102(17):8241-6. PubMed ID: 21708459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gas Phase Hydrogenation of Furaldehydes via Coupling with Alcohol Dehydrogenation over Ceria Supported Au-Cu.
    Pischetola C; Collado L; Keane MA; Cárdenas-Lizana F
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30405073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.