These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Adjusting a light dispersion model to fit measurements from vertebrate ocular media as well as ray-tracing in fish lenses. Gagnon YL; Kröger RH; Söderberg B Vision Res; 2010 Apr; 50(9):850-3. PubMed ID: 20219517 [TBL] [Abstract][Full Text] [Related]
4. Chromatic dispersion of the ocular media. Sivak JG; Mandelman T Vision Res; 1982; 22(8):997-1003. PubMed ID: 6982563 [TBL] [Abstract][Full Text] [Related]
6. Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans. Kröger RH; Gislén A Vision Res; 2004; 44(18):2129-34. PubMed ID: 15183679 [TBL] [Abstract][Full Text] [Related]
7. Possible role of fundus circulation as an intraocular colour filter in certain fishes. Sivak JG; Roth PI Rev Can Biol; 1978 Jun; 37(2):85-90. PubMed ID: 704983 [TBL] [Abstract][Full Text] [Related]
9. Aging and the optical quality of the rat crystalline lens. Sivak JG; Dovrat A Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1162-6. PubMed ID: 6885305 [TBL] [Abstract][Full Text] [Related]
10. The Glenn A. Fry Award Lecture: optics of the crystalline lens. Sivak JG Am J Optom Physiol Opt; 1985 May; 62(5):299-308. PubMed ID: 3890552 [TBL] [Abstract][Full Text] [Related]
11. Multifocal lenses in a monochromat: the harbour seal. Hanke FD; Kröger RH; Siebert U; Dehnhardt G J Exp Biol; 2008 Oct; 211(Pt 20):3315-22. PubMed ID: 18840666 [TBL] [Abstract][Full Text] [Related]
12. [Comparative characteristics of the vitreous body proteins in vertebrates]. Zorin NA; Rykov VA; Potekhin VK; Savinykh VI; Chirikova TS Zh Evol Biokhim Fiziol; 1985; 21(2):130-3. PubMed ID: 3993277 [TBL] [Abstract][Full Text] [Related]
13. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization. Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454 [TBL] [Abstract][Full Text] [Related]
14. The evolution of lenses. Land MF Ophthalmic Physiol Opt; 2012 Nov; 32(6):449-60. PubMed ID: 23057564 [TBL] [Abstract][Full Text] [Related]
15. [Comparative x-ray diffraction study of the crystalline lens in a number of vertebrates including man]. Krivandin AV; L'vov IuM; Ostrovskiĭ MA; Fedorovich IB; Feĭgin LA Zh Evol Biokhim Fiziol; 1984; 20(3):266-71. PubMed ID: 6610998 [TBL] [Abstract][Full Text] [Related]
16. Dual laser flow cytometry: focal length compensation when focussing through a single lens. Fellner-Feldegg H Cytometry; 1985 Jul; 6(4):286-9. PubMed ID: 4017794 [TBL] [Abstract][Full Text] [Related]
17. Spherical aberration of the lens of the ground squirrel (Spermophilis tridecemlineatus). Sivak JG; Gur M; Dovrat A Ophthalmic Physiol Opt; 1983; 3(3):261-5. PubMed ID: 6646760 [TBL] [Abstract][Full Text] [Related]
18. Growth of the visual system in the African cichlid fish, Haplochromis burtoni. Optics. Fernald RD; Wright SE Vision Res; 1985; 25(2):155-61. PubMed ID: 4013083 [TBL] [Abstract][Full Text] [Related]
19. Accommodation with and without short-wavelength-sensitive cones and chromatic aberration. Kruger PB; Rucker FJ; Hu C; Rutman H; Schmidt NW; Roditis V Vision Res; 2005 May; 45(10):1265-74. PubMed ID: 15733959 [TBL] [Abstract][Full Text] [Related]
20. Pupil shapes and lens optics in the eyes of terrestrial vertebrates. Malmström T; Kröger RH J Exp Biol; 2006 Jan; 209(Pt 1):18-25. PubMed ID: 16354774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]