These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 38720268)
1. Response mechanisms of different Saccharomyces cerevisiae strains to succinic acid. Xie CY; Su RR; Wu B; Sun ZY; Tang YQ BMC Microbiol; 2024 May; 24(1):158. PubMed ID: 38720268 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of enhanced salt tolerance in Saccharomyces cerevisiae by CRZ1 overexpression. Zuo F; Wu Y; Sun Y; Xie C; Tang Y Sci Rep; 2024 Oct; 14(1):22875. PubMed ID: 39358483 [TBL] [Abstract][Full Text] [Related]
3. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol. Samakkarn W; Ratanakhanokchai K; Soontorngun N Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Raab AM; Gebhardt G; Bolotina N; Weuster-Botz D; Lang C Metab Eng; 2010 Nov; 12(6):518-25. PubMed ID: 20854924 [TBL] [Abstract][Full Text] [Related]
5. Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae. Malubhoy Z; Bahia FM; de Valk SC; de Hulster E; Rendulić T; Ortiz JPR; Xiberras J; Klein M; Mans R; Nevoigt E Microb Cell Fact; 2022 May; 21(1):102. PubMed ID: 35643577 [TBL] [Abstract][Full Text] [Related]
6. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746 [No Abstract] [Full Text] [Related]
7. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Yan D; Wang C; Zhou J; Liu Y; Yang M; Xing J Bioresour Technol; 2014 Mar; 156():232-9. PubMed ID: 24508660 [TBL] [Abstract][Full Text] [Related]
8. Uncoupling growth and succinic acid production in an industrial Saccharomyces cerevisiae strain. Liu Y; Esen O; Pronk JT; van Gulik WM Biotechnol Bioeng; 2021 Apr; 118(4):1576-1586. PubMed ID: 33410171 [TBL] [Abstract][Full Text] [Related]
9. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Ito Y; Hirasawa T; Shimizu H Biosci Biotechnol Biochem; 2014; 78(1):151-9. PubMed ID: 25036498 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Mira NP; Palma M; Guerreiro JF; Sá-Correia I Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990 [TBL] [Abstract][Full Text] [Related]
13. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation. Rezaei MN; Aslankoohi E; Verstrepen KJ; Courtin CM Int J Food Microbiol; 2015 Jul; 204():24-32. PubMed ID: 25828707 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide expression analyses: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. Erasmus DJ; van der Merwe GK; van Vuuren HJ FEMS Yeast Res; 2003 Jun; 3(4):375-99. PubMed ID: 12748050 [TBL] [Abstract][Full Text] [Related]
15. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae. Raab AM; Lang C Bioeng Bugs; 2011; 2(2):120-3. PubMed ID: 21637001 [TBL] [Abstract][Full Text] [Related]
16. Regulatory mechanism of Haa1p and Tye7p in Saccharomyces cerevisiae when fermenting mixed glucose and xylose with or without inhibitors. Li B; Wang L; Xie JY; Xia ZY; Xie CY; Tang YQ Microb Cell Fact; 2022 May; 21(1):105. PubMed ID: 35643525 [TBL] [Abstract][Full Text] [Related]
17. Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production. Franco-Duarte R; Bessa D; Gonçalves F; Martins R; Silva-Ferreira AC; Schuller D; Sampaio P; Pais C FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28910984 [TBL] [Abstract][Full Text] [Related]
18. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. Haslbeck M; Braun N; Stromer T; Richter B; Model N; Weinkauf S; Buchner J EMBO J; 2004 Feb; 23(3):638-49. PubMed ID: 14749732 [TBL] [Abstract][Full Text] [Related]
19. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Matsushika A; Goshima T; Hoshino T Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867 [TBL] [Abstract][Full Text] [Related]
20. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Hasunuma T; Ismail KSK; Nambu Y; Kondo A J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]