These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 38720353)
1. Unfolding the ventral nerve center of chaetognaths. Ordoñez JF; Wollesen T Neural Dev; 2024 May; 19(1):5. PubMed ID: 38720353 [TBL] [Abstract][Full Text] [Related]
2. Neurogenesis in an early protostome relative: progenitor cells in the ventral nerve center of chaetognath hatchlings are arranged in a highly organized geometrical pattern. Perez Y; Rieger V; Martin E; Müller CH; Harzsch S J Exp Zool B Mol Dev Evol; 2013 May; 320(3):179-93. PubMed ID: 23483730 [TBL] [Abstract][Full Text] [Related]
3. Nervous system development in cephalopods: How egg yolk-richness modifies the topology of the mediolateral patterning system. Buresi A; Andouche A; Navet S; Bassaglia Y; Bonnaud-Ponticelli L; Baratte S Dev Biol; 2016 Jul; 415(1):143-156. PubMed ID: 27151209 [TBL] [Abstract][Full Text] [Related]
4. Restricted expression of a median Hox gene in the central nervous system of chaetognaths. Papillon D; Perez Y; Fasano L; Le Parco Y; Caubit X Dev Genes Evol; 2005 Jul; 215(7):369-73. PubMed ID: 15789247 [TBL] [Abstract][Full Text] [Related]
5. Spatiotemporal regulation of nervous system development in the annelid Sur A; Magie CR; Seaver EC; Meyer NP Evodevo; 2017; 8():13. PubMed ID: 28775832 [TBL] [Abstract][Full Text] [Related]
6. Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria. Rieger V; Perez Y; Müller CH; Lacalli T; Hansson BS; Harzsch S Dev Growth Differ; 2011 Jun; 53(5):740-59. PubMed ID: 21671921 [TBL] [Abstract][Full Text] [Related]
7. Developmental architecture of the nervous system in Themiste lageniformis (Sipuncula): New evidence from confocal laser scanning microscopy and gene expression. Carrillo-Baltodano AM; Boyle MJ; Rice ME; Meyer NP J Morphol; 2019 Nov; 280(11):1628-1650. PubMed ID: 31487090 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary conservation of the presumptive neural plate markers AmphiSox1/2/3 and AmphiNeurogenin in the invertebrate chordate amphioxus. Holland LZ; Schubert M; Holland ND; Neuman T Dev Biol; 2000 Oct; 226(1):18-33. PubMed ID: 10993671 [TBL] [Abstract][Full Text] [Related]
9. Molecular and morphological analysis of the developing nemertean brain indicates convergent evolution of complex brains in Spiralia. Gąsiorowski L; Børve A; Cherneva IA; Orús-Alcalde A; Hejnol A BMC Biol; 2021 Aug; 19(1):175. PubMed ID: 34452633 [TBL] [Abstract][Full Text] [Related]
10. Evolution of Snail-mediated regulation of neural crest and placodes from an ancient role in bilaterian neurogenesis. York JR; Zehnder K; Yuan T; Lakiza O; McCauley DW Dev Biol; 2019 Sep; 453(2):180-190. PubMed ID: 31211947 [TBL] [Abstract][Full Text] [Related]
11. ParaHox gene expression in larval and postlarval development of the polychaete Nereis virens (Annelida, Lophotrochozoa). Kulakova MA; Cook CE; Andreeva TF BMC Dev Biol; 2008 May; 8():61. PubMed ID: 18510732 [TBL] [Abstract][Full Text] [Related]
12. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Denes AS; Jékely G; Steinmetz PR; Raible F; Snyman H; Prud'homme B; Ferrier DE; Balavoine G; Arendt D Cell; 2007 Apr; 129(2):277-88. PubMed ID: 17448990 [TBL] [Abstract][Full Text] [Related]
13. Investigating cellular and molecular mechanisms of neurogenesis in Capitella teleta sheds light on the ancestor of Annelida. Sur A; Renfro A; Bergmann PJ; Meyer NP BMC Evol Biol; 2020 Jul; 20(1):84. PubMed ID: 32664907 [TBL] [Abstract][Full Text] [Related]
14. The origins of axial patterning in the metazoa: how old is bilateral symmetry? Finnerty JR Int J Dev Biol; 2003; 47(7-8):523-9. PubMed ID: 14756328 [TBL] [Abstract][Full Text] [Related]
15. Role of BMP signaling during early development of the annelid Capitella teleta. Webster NB; Corbet M; Sur A; Meyer NP Dev Biol; 2021 Oct; 478():183-204. PubMed ID: 34216573 [TBL] [Abstract][Full Text] [Related]
16. Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans. Fröbius AC; Funch P Nat Commun; 2017 Apr; 8(1):9. PubMed ID: 28377584 [TBL] [Abstract][Full Text] [Related]
17. Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Lichtneckert R; Reichert H Heredity (Edinb); 2005 May; 94(5):465-77. PubMed ID: 15770230 [TBL] [Abstract][Full Text] [Related]
18. An emerging role for prdm family genes in dorsoventral patterning of the vertebrate nervous system. Zannino DA; Sagerström CG Neural Dev; 2015 Oct; 10():24. PubMed ID: 26499851 [TBL] [Abstract][Full Text] [Related]
19. Characterization of eyes, photoreceptors, and opsins in developmental stages of the arrow worm Spadella cephaloptera (Chaetognatha). Wollesen T; Rodriguez Monje SV; Oel AP; Arendt D J Exp Zool B Mol Dev Evol; 2023 Jul; 340(5):342-353. PubMed ID: 36855226 [TBL] [Abstract][Full Text] [Related]
20. Evolution of bilaterian central nervous systems: a single origin? Holland LZ; Carvalho JE; Escriva H; Laudet V; Schubert M; Shimeld SM; Yu JK Evodevo; 2013 Oct; 4(1):27. PubMed ID: 24098981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]