These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 38721269)
1. Audio tagging of avian dawn chorus recordings in California, Oregon and Washington. Weldy MJ; Denton T; Fleishman AB; Tolchin J; McKown M; Spaan RS; Ruff ZJ; Jenkins JMA; Betts MG; Lesmeister DB Biodivers Data J; 2024; 12():e118315. PubMed ID: 38721269 [TBL] [Abstract][Full Text] [Related]
2. An annotated set of audio recordings of Eastern North American birds containing frequency, time, and species information. Chronister LM; Rhinehart TA; Place A; Kitzes J Ecology; 2021 Jun; 102(6):e03329. PubMed ID: 33705568 [TBL] [Abstract][Full Text] [Related]
3. An acoustic detection dataset of birds (Aves) in montane forests using a deep learning approach. Wu SH; Ko JC; Lin RS; Tsai WL; Chang HW Biodivers Data J; 2023; 11():e97811. PubMed ID: 38327353 [TBL] [Abstract][Full Text] [Related]
4. ArcticBirdSounds: An open-access, multiyear, and detailed annotated dataset of bird songs and calls. Christin S; Chicoine C; O'Neill Sanger T; Guigueno MF; Hansen J; Lanctot RB; MacNearney D; Rausch J; Saalfeld ST; Schmidt NM; Smith PA; Woodard PF; Hervet É; Lecomte N Ecology; 2023 Jun; 104(6):e4047. PubMed ID: 37261395 [TBL] [Abstract][Full Text] [Related]
5. Loss of temporal structure of tropical soundscapes with intensifying land use in Borneo. Burivalova Z; Maeda TM; Purnomo ; Rayadin Y; Boucher T; Choksi P; Roe P; Truskinger A; Game ET Sci Total Environ; 2022 Dec; 852():158268. PubMed ID: 36058325 [TBL] [Abstract][Full Text] [Related]
6. SoundScape learning: An automatic method for separating fish chorus in marine soundscapes. Kim EB; Frasier KE; McKenna MF; Kok ACM; Peavey Reeves LE; Oestreich WK; Arrieta G; Wiggins S; Baumann-Pickering S J Acoust Soc Am; 2023 Mar; 153(3):1710. PubMed ID: 37002102 [TBL] [Abstract][Full Text] [Related]
7. Sound-mapping a coniferous forest-Perspectives for biodiversity monitoring and noise mitigation. Turner A; Fischer M; Tzanopoulos J PLoS One; 2018; 13(1):e0189843. PubMed ID: 29320514 [TBL] [Abstract][Full Text] [Related]
8. Limits to the accurate and generalizable use of soundscapes to monitor biodiversity. Sethi SS; Bick A; Ewers RM; Klinck H; Ramesh V; Tuanmu MN; Coomes DA Nat Ecol Evol; 2023 Sep; 7(9):1373-1378. PubMed ID: 37524796 [TBL] [Abstract][Full Text] [Related]
9. NIPS4Bplus: a richly annotated birdsong audio dataset. Morfi V; Bas Y; Pamuła H; Glotin H; Stowell D PeerJ Comput Sci; 2019; 5():e223. PubMed ID: 33816876 [TBL] [Abstract][Full Text] [Related]
10. Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New Guinea. Burivalova Z; Towsey M; Boucher T; Truskinger A; Apelis C; Roe P; Game ET Conserv Biol; 2018 Feb; 32(1):205-215. PubMed ID: 28612939 [TBL] [Abstract][Full Text] [Related]
11. Repeatability of signalling traits in the avian dawn chorus. Naguib M; Diehl J; van Oers K; Snijders L Front Zool; 2019; 16():27. PubMed ID: 31333753 [TBL] [Abstract][Full Text] [Related]
12. Habitat type drives the spatial distribution of Australian fish chorus diversitya). Hawkins LA; Saunders BJ; Landero Figueroa MM; McCauley RD; Parnum IM; Parsons MJ; Erbe C J Acoust Soc Am; 2023 Oct; 154(4):2305-2320. PubMed ID: 37843381 [TBL] [Abstract][Full Text] [Related]
13. Systematic review of machine learning methods applied to ecoacoustics and soundscape monitoring. Nieto-Mora DA; Rodríguez-Buritica S; Rodríguez-Marín P; Martínez-Vargaz JD; Isaza-Narváez C Heliyon; 2023 Oct; 9(10):e20275. PubMed ID: 37790981 [TBL] [Abstract][Full Text] [Related]
14. Phylogenetic and ecological determinants of the neotropical dawn chorus. Berg KS; Brumfield RT; Apanius V Proc Biol Sci; 2006 Apr; 273(1589):999-1005. PubMed ID: 16627286 [TBL] [Abstract][Full Text] [Related]
15. Analytical approaches for evaluating passive acoustic monitoring data: A case study of avian vocalizations. Symes LB; Kittelberger KD; Stone SM; Holmes RT; Jones JS; Castaneda Ruvalcaba IP; Webster MS; Ayres MP Ecol Evol; 2022 Apr; 12(4):e8797. PubMed ID: 35475182 [TBL] [Abstract][Full Text] [Related]
16. Calling at the highway: The spatiotemporal constraint of road noise on Pacific chorus frog communication. Nelson DV; Klinck H; Carbaugh-Rutland A; Mathis CL; Morzillo AT; Garcia TS Ecol Evol; 2017 Jan; 7(1):429-440. PubMed ID: 28070305 [TBL] [Abstract][Full Text] [Related]
17. A bird vocalisation dataset of birds in Uganda for automated bio-acoustic monitoring and analysis. Magumba MA; Denton T; Bashir M Data Brief; 2024 Jun; 54():110433. PubMed ID: 38708308 [TBL] [Abstract][Full Text] [Related]
18. Evaluating community-wide temporal sampling in passive acoustic monitoring: A comprehensive study of avian vocal patterns in subtropical montane forests. Wu SH; Ko JC; Lin RS; Chang-Yang CH; Chang HW F1000Res; 2023; 12():1299. PubMed ID: 38655208 [TBL] [Abstract][Full Text] [Related]
19. Methods to measure biological sounds and assess their drivers in a tropical forest. Diepstraten J; Kuenbou JK; Willie J MethodsX; 2022; 9():101619. PubMed ID: 35145884 [TBL] [Abstract][Full Text] [Related]
20. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction. Palacios V; López-Bao JV; Llaneza L; Fernández C; Font E PLoS One; 2016; 11(5):e0153858. PubMed ID: 27144887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]