These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 38721378)

  • 1. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy.
    Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G
    ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic and catalytic Au NBP@AgPd nanoframes for highly efficient photocatalytic reactions.
    Xu J; Xu H; Xu L; Ruan Q; Zhu X; Kan C; Shi D
    Phys Chem Chem Phys; 2023 May; 25(18):13189-13197. PubMed ID: 37129667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis.
    Ten A; Lomonosov V; Boukouvala C; Ringe E
    ACS Nano; 2024 Jul; 18(28):18785-18799. PubMed ID: 38963330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy.
    Zhan C; Chen XJ; Huang YF; Wu DY; Tian ZQ
    Acc Chem Res; 2019 Oct; 52(10):2784-2792. PubMed ID: 31532621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies.
    Warkentin CL; Yu Z; Sarkar A; Frontiera RR
    Acc Chem Res; 2021 May; 54(10):2457-2466. PubMed ID: 33957039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ SERS monitoring of plasmon-driven catalytic reaction on gap-controlled Ag nanoparticle arrays under 785 nm irradiation.
    Liu Y; Zhang L; Liu X; Zhang Y; Yan Y; Zhao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120803. PubMed ID: 35007906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry.
    Szczerbiński J; Gyr L; Kaeslin J; Zenobi R
    Nano Lett; 2018 Nov; 18(11):6740-6749. PubMed ID: 30277787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Au-Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering.
    Yin Z; Wang Y; Song C; Zheng L; Ma N; Liu X; Li S; Lin L; Li M; Xu Y; Li W; Hu G; Fang Z; Ma D
    J Am Chem Soc; 2018 Jan; 140(3):864-867. PubMed ID: 29301395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes.
    Kang M; Jeon B; Park JY
    Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling the Mechanism of Plasmon Photocatalysis via Multiquantum Vibrational Excitation.
    Jeong J; Shin HH; Kim ZH
    ACS Nano; 2024 Sep; 18(36):25290-25301. PubMed ID: 39185823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact Integration of TiO₂ Nanoparticles into the Cross-Points of 3D Vertically Stacked Ag Nanowires for Plasmon-Enhanced Photocatalysis.
    Linh VTN; Xiao X; Jung HS; Giannini V; Maier SA; Kim DH; Lee YI; Park SG
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30897804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites.
    Yang JL; Xu J; Ren H; Sun L; Xu QC; Zhang H; Li JF; Tian ZQ
    Nanoscale; 2017 May; 9(19):6254-6258. PubMed ID: 28463374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking the Fate of Surface Plasmon Resonance-Generated Hot Electrons by In Situ SERS Surveying of Catalyzed Reaction.
    Liu R; He Z; Sun J; Liu J; Jiang G
    Small; 2016 Dec; 12(46):6378-6387. PubMed ID: 27670748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal-effect dominated plasmonic catalysis on silver nanoislands.
    Kong T; Kang B; Wang W; Deckert-Gaudig T; Zhang Z; Deckert V
    Nanoscale; 2024 Jun; 16(22):10745-10750. PubMed ID: 38738933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate SERS monitoring of the plasmon mediated UV/visible/NIR photocatalytic and photothermal catalytic process involving Ag@carbon dots.
    Li L; Jin J; Liu J; Yang J; Song W; Yang B; Zhao B
    Nanoscale; 2021 Jan; 13(2):1006-1015. PubMed ID: 33367352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast Nanoscale Raman Thermometry Proves Heating Is Not a Primary Mechanism for Plasmon-Driven Photocatalysis.
    Keller EL; Frontiera RR
    ACS Nano; 2018 Jun; 12(6):5848-5855. PubMed ID: 29883086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.