These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38721382)
1. Remote Activation of H-H Bonds by Platinum in Dilute Alloy Catalysts. Han T; Li Y; Wu T; Meira DM; Xiang S; Cao Y; Lee I; Zhou XG; Jiang DE; Frenkel AI; Zaera F ACS Catal; 2024 May; 14(9):7157-7165. PubMed ID: 38721382 [TBL] [Abstract][Full Text] [Related]
2. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts. Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456 [TBL] [Abstract][Full Text] [Related]
3. Designing Efficient Single-Atom Alloy Catalysts for Selective C═O Hydrogenation: A First-Principles, Active Learning and Microkinetic Study. Feng H; Zhang M; Ge Z; Deng Y; Pu P; Zhou W; Yuan H; Yang J; Li F; Zhang X; Zhang YW ACS Appl Mater Interfaces; 2023 Dec; 15(48):55903-55915. PubMed ID: 37996252 [TBL] [Abstract][Full Text] [Related]
4. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces. Hibbitts D; Iglesia E Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328 [TBL] [Abstract][Full Text] [Related]
5. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst. Cao X; Fu Q; Luo Y Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397 [TBL] [Abstract][Full Text] [Related]
6. Tuning the Hydrogenation Selectivity of an Unsaturated Aldehyde via Single-Atom Alloy Catalysts. Ngan HT; Sautet P J Am Chem Soc; 2024 Jan; 146(4):2556-2567. PubMed ID: 38252846 [TBL] [Abstract][Full Text] [Related]
7. Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Luneau M; Lim JS; Patel DA; Sykes ECH; Friend CM; Sautet P Chem Rev; 2020 Dec; 120(23):12834-12872. PubMed ID: 33006894 [TBL] [Abstract][Full Text] [Related]
8. Atomically Dispersed Pt Zhang B; Sun G; Ding S; Asakura H; Zhang J; Sautet P; Yan N J Am Chem Soc; 2019 May; 141(20):8185-8197. PubMed ID: 31030515 [TBL] [Abstract][Full Text] [Related]
9. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Lee JD; Miller JB; Shneidman AV; Sun L; Weaver JF; Aizenberg J; Biener J; Boscoboinik JA; Foucher AC; Frenkel AI; van der Hoeven JES; Kozinsky B; Marcella N; Montemore MM; Ngan HT; O'Connor CR; Owen CJ; Stacchiola DJ; Stach EA; Madix RJ; Sautet P; Friend CM Chem Rev; 2022 May; 122(9):8758-8808. PubMed ID: 35254051 [TBL] [Abstract][Full Text] [Related]
10. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems. Stacchiola DJ Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058 [TBL] [Abstract][Full Text] [Related]
11. Host-induced alteration of the neighbors of single platinum atoms enables selective and stable hydrogenation of butadiene. Wang Y; Wang M; Mou X; Wang S; Jiang X; Chen Z; Jiang Z; Lin R; Ding Y Nanoscale; 2022 Jul; 14(29):10506-10513. PubMed ID: 35830255 [TBL] [Abstract][Full Text] [Related]
12. Fully exposed Pt clusters for efficient catalysis of multi-step hydrogenation reactions. Si Y; Jiao Y; Wang M; Xiang S; Diao J; Chen X; Chen J; Wang Y; Xiao D; Wen X; Wang N; Ma D; Liu H Nat Commun; 2024 Jun; 15(1):4887. PubMed ID: 38849368 [TBL] [Abstract][Full Text] [Related]
13. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Zhang X; Cui G; Feng H; Chen L; Wang H; Wang B; Zhang X; Zheng L; Hong S; Wei M Nat Commun; 2019 Dec; 10(1):5812. PubMed ID: 31862887 [TBL] [Abstract][Full Text] [Related]
14. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Zhao M; Yuan K; Wang Y; Li G; Guo J; Gu L; Hu W; Zhao H; Tang Z Nature; 2016 Nov; 539(7627):76-80. PubMed ID: 27706142 [TBL] [Abstract][Full Text] [Related]
15. In situ identification of surface sites in Cu-Pt bimetallic catalysts: Gas-induced metal segregation. Han T; Li Y; Cao Y; Lee I; Zhou X; Frenkel AI; Zaera F J Chem Phys; 2022 Dec; 157(23):234706. PubMed ID: 36550054 [TBL] [Abstract][Full Text] [Related]
16. Tuning Ligand-Coordinated Single Metal Atoms on TiO Zhou X; Sterbinsky GE; Wasim E; Chen L; Tait SL ChemSusChem; 2021 Sep; 14(18):3825-3837. PubMed ID: 33955201 [TBL] [Abstract][Full Text] [Related]
17. Cascade Anchoring Strategy for Fabricating High-Loading Pt Single Atoms as Bifunctional Catalysts for Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. Wang N; Mei R; Lin X; Chen L; Yang T; Liu Q; Chen Z ACS Appl Mater Interfaces; 2023 Jun; 15(24):29195-29203. PubMed ID: 37300489 [TBL] [Abstract][Full Text] [Related]
18. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. Chin YH; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447 [TBL] [Abstract][Full Text] [Related]
19. Improving selective hydrogenation of carbonyls bond in α, β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH Zahid M; Ismail A; Sohail M; Zhu Y J Colloid Interface Sci; 2022 Dec; 628(Pt B):141-152. PubMed ID: 35987153 [TBL] [Abstract][Full Text] [Related]
20. Breaking Continuously Packed Bimetallic Sites to Singly Dispersed on Nonmetallic Support for Efficient Hydrogen Production. Jiang T; Li Y; Tang Y; Zhang S; Le D; Rahman TS; Tao F ACS Appl Mater Interfaces; 2024 May; 16(17):21757-21770. PubMed ID: 38632669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]