BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 3872167)

  • 21. Metabolic basis of arabinonucleoside selectivity for human leukemic T- and B-lymphoblasts.
    Verhoef V; Fridland A
    Cancer Res; 1985 Aug; 45(8):3646-50. PubMed ID: 2410098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resistance to 2-chloro-2'-deoxyadenosine of the human B-cell leukemia cell line EHEB.
    Cardoen S; Van Den Neste E; Smal C; Rosier JF; Delacauw A; Ferrant A; Van den Berghe G; Bontemps F
    Clin Cancer Res; 2001 Nov; 7(11):3559-66. PubMed ID: 11705877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential sensitivity of leukemic cells to growth inhibition by deoxyadenosine and deoxycoformycin.
    Tanaka M; Kimura K
    Tohoku J Exp Med; 1985 Dec; 147(4):331-41. PubMed ID: 3879563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA strand breaks induced in human T-lymphocytes by the combination of deoxyadenosine and deoxycoformycin.
    Brox L; Ng A; Pollock E; Belch A
    Cancer Res; 1984 Mar; 44(3):934-7. PubMed ID: 6607110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resistance of pokeweed mitogen-stimulated B cells to inhibition by deoxyadenosine.
    Hayward AR
    Clin Exp Immunol; 1980 Jul; 41(1):141-9. PubMed ID: 6969149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selection of 9-beta-D-arabinofuranosyladenine-resistant human T-lymphoblasts with altered ribonucleotide reductase activity.
    Fridland A
    Cancer Res; 1984 Oct; 44(10):4328-32. PubMed ID: 6380707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential composition of cytosol 5'-nucleotidases between T and B lymphoblasts.
    Iizasa T; Takeuchi F; Honda Z; Nishida Y; Kamatani N; Miyamoto T
    Biochim Biophys Acta; 1986 Jun; 882(2):228-33. PubMed ID: 3011114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of deoxycoformycin in mice. II. Differences between the drug sensitivities and purine metabolizing enzymes of transplantable lymphomas of varying immunologic phenotypes.
    Ratech H; Kim J; Asofsky R; Thorbecke GJ; Hirschhorn R
    J Immunol; 1984 Jun; 132(6):3077-84. PubMed ID: 6202772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Consequences of adenosine deaminase deficiency on thymocyte metabolism.
    Thuillier L; Garreau F; Cartier PH
    Eur J Immunol; 1981 Oct; 11(10):788-94. PubMed ID: 6975717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative sensitivity of human T cell subsets to deoxyadenosine toxicity.
    Callard RE; Ewing TM; Fox RM
    Clin Exp Immunol; 1984 Oct; 58(1):136-44. PubMed ID: 6236916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of deoxycytidine kinase by deoxyadenosine: implications in deoxyadenosine-mediated cytotoxicity.
    Keszler G; Virga S; Spasokoukotskaja T; Bauer PI; Sasvari-Szekely M; Staub M
    Arch Biochem Biophys; 2005 Apr; 436(1):69-77. PubMed ID: 15752710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biochemical pharmacology of (2'-R)-chloropentostatin, a novel inhibitor of adenosine deaminase.
    Jackson RC; Leopold WR; Ross DA
    Adv Enzyme Regul; 1986; 25():125-39. PubMed ID: 2433905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resistance to glucocorticoid-induced apoptosis in human T-cell acute lymphoblastic leukemia CEM-C1 cells is due to insufficient glucocorticoid receptor expression.
    Geley S; Hartmann BL; Hala M; Strasser-Wozak EM; Kapelari K; Kofler R
    Cancer Res; 1996 Nov; 56(21):5033-8. PubMed ID: 8895760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preclinical studies on deoxycoformycin and deoxyadenosine as pharmacologic T cell purging tools.
    Sheridan W; Gordon DS; Fullen AJ; Olson A; Vogler WR; Winton E
    Bone Marrow Transplant; 1989 Sep; 4(5):511-7. PubMed ID: 2790329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced cytotoxicity and inhibition of DNA damage repair in irradiated murine L5178Y lymphoblasts and human chronic lymphocytic leukemia cells treated with 2'-deoxycoformycin and deoxyadenosine in vitro.
    Begleiter A; Pugh L; Israels LG; Johnston JB
    Cancer Res; 1988 Jul; 48(14):3981-6. PubMed ID: 3260129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of inhibition of T-acute lymphoblastic leukemia cells by PNP inhibitor--BCX-1777.
    Bantia S; Ananth SL; Parker CD; Horn LL; Upshaw R
    Int Immunopharmacol; 2003 Jun; 3(6):879-87. PubMed ID: 12781704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitor of 2',5'-oligoadenylate synthetase induced in human T lymphoblastoid cell line treated with deoxyadenosine, deoxycoformycin and interferon.
    Heike T; Katamura K; Kubota M; Shinomiya K; Mikawa H
    Biochem Biophys Res Commun; 1985 Mar; 127(3):1019-25. PubMed ID: 3872657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of deoxyadenosine on the activation of ADA inhibited T & B cells.
    Webster AD; Ip H; Pereira S
    Clin Exp Immunol; 1982 Dec; 50(3):587-95. PubMed ID: 6299634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deoxycoformycin-induced response in chronic lymphocytic leukaemia: deoxyadenosine toxicity in non-replicating lymphocytes.
    Kefford RF; Fox RM
    Br J Haematol; 1982 Apr; 50(4):627-36. PubMed ID: 6978147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of the mechanism of cytotoxicity of 2-chloro-9-(2-deoxy-2- fluoro-beta-D-arabinofuranosyl)adenine, 2-chloro-9-(2-deoxy-2-fluoro- beta-D-ribofuranosyl)adenine, and 2-chloro-9-(2-deoxy-2,2-difluoro- beta-D-ribofuranosyl)adenine in CEM cells.
    Parker WB; Shaddix SC; Rose LM; Shewach DS; Hertel LW; Secrist JA; Montgomery JA; Bennett LL
    Mol Pharmacol; 1999 Mar; 55(3):515-20. PubMed ID: 10051535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.