These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3872229)

  • 1. Periodic and nonperiodic burst responses of frog (Rana pipiens) retinal ganglion cells.
    Stiles M; Tzanakou E; Michalak R; Unnikrishnan KP; Goyal P; Harth E
    Exp Neurol; 1985 Apr; 88(1):176-97. PubMed ID: 3872229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Characteristics of the inhibition in receptive fields of class 1 and 3 in the frog retina].
    Zhukov VA
    Fiziol Zh SSSR Im I M Sechenova; 1983 Jan; 69(1):34-40. PubMed ID: 6600690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal organization of the binocular input to frog optic tectum.
    Raybourn MS
    Brain Behav Evol; 1975; 11(3-4):161-78. PubMed ID: 1081008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of electrical transients in tectal neuropil of the frog, Rana pipiens.
    Grant AC; Lettvin JY
    Brain Res; 1991 Sep; 560(1-2):106-21. PubMed ID: 1760719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of postsynaptic potentials of tectal neurons of the frog: correlation with impulses recorded from the terminals of retinotectal afferents.
    Nagano K; Li QL; Tamada A; Matsumoto N
    Exp Brain Res; 1988; 70(2):429-32. PubMed ID: 3260193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardinal difference between the orientation-selective retinal ganglion cells projecting to the fish tectum and the orientation-selective complex cells of the mammalian striate cortex.
    Damjanović I; Maximova E; Maximov P; Maximov V
    J Integr Neurosci; 2012 Jun; 11(2):169-82. PubMed ID: 22744823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The velocity function of ipsilateral visual units in the frog optic tectum: comparison with retinal ganglion cells.
    Gaillard F; Garcia R
    Neurosci Lett; 1986 Mar; 65(1):99-103. PubMed ID: 3486389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early postnatal development of visual function in ganglion cells of the cat retina.
    Tootle JS
    J Neurophysiol; 1993 May; 69(5):1645-60. PubMed ID: 8509831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptive-field properties of displaced starburst amacrine cells change following axotomy-induced degeneration of ganglion cells.
    Jensen RJ
    Vis Neurosci; 1995; 12(1):177-84. PubMed ID: 7718498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection.
    Singman EL; Scalia F
    J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Discharges of neurons of the frog tectum during electric stimulation of individual retinal ganglion cells].
    Kuras AV; Khusainoviene NP
    Neirofiziologiia; 1984; 16(6):829-35. PubMed ID: 6097825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets.
    Cantore WA; Scalia F
    J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suprathreshold excitation of frog tectal neurons by short spike trains of single retinal ganglion cell.
    Kuras A; Baginskas A; Batuleviciene V
    Exp Brain Res; 2004 Dec; 159(4):509-18. PubMed ID: 15221171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative studies on ipsilateral type 2 retinotectotectal (IRTT) units in frogs: homologies with R3 ganglion cells.
    Garcia R; Gaillard F
    J Comp Physiol A; 1989 Jan; 164(3):377-89. PubMed ID: 2785209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The time course of inhibition during the delayed response of the on-off ganglion cell in the frog.
    Chino YM; Sturr JF
    Vision Res; 1975 Feb; 15(2):185-91. PubMed ID: 1079381
    [No Abstract]   [Full Text] [Related]  

  • 16. Electrophysiology of neural units in goldfish optic tectum.
    O'Benar JD
    Brain Res Bull; 1976; 1(6):529-41. PubMed ID: 1021210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of an early 'off' response in frog optic tectum.
    Stevens RJ
    Brain Res; 1974 Feb; 67(1):51-63. PubMed ID: 4549763
    [No Abstract]   [Full Text] [Related]  

  • 18. Functional morphology of frog retinal ganglion cells and their central projections: the dimming detectors.
    Stirling RV; Merrill EG
    J Comp Neurol; 1987 Apr; 258(4):477-95. PubMed ID: 3495556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhythmic activity in frog (Rana pipiens) visual system.
    Kline LW; Pickering SG
    Experientia; 1974 Sep; 30(9):1040-1. PubMed ID: 4547296
    [No Abstract]   [Full Text] [Related]  

  • 20. [The effect of stimulus velocity on inhibition efficiency in the responses of the retinal ganglion cells in the frog].
    Khabibullin RD; Khabibullina LA; Mutygullin FM; Lantsman SA
    Fiziol Zh SSSR Im I M Sechenova; 1989 Jul; 75(7):904-10. PubMed ID: 2806665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.