These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38722304)

  • 1. Understanding the influence of confounding factors in myoelectric control for discrete gesture recognition.
    Eddy E; Campbell E; Bateman S; Scheme E
    J Neural Eng; 2024 May; 21(3):. PubMed ID: 38722304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Big data in myoelectric control: large multi-user models enable robust zero-shot EMG-based discrete gesture recognition.
    Eddy E; Campbell E; Bateman S; Scheme E
    Front Bioeng Biotechnol; 2024; 12():1463377. PubMed ID: 39380895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of suitable hand gestures for reliable myoelectric human computer interface.
    Castro MC; Arjunan SP; Kumar DK
    Biomed Eng Online; 2015 Apr; 14():30. PubMed ID: 25889735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Synergy-Based Hand Gesture Recognition Method Against Force Variation for Robust Myoelectric Control.
    Teng Z; Xu G; Liang R; Li M; Zhang S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2345-2354. PubMed ID: 34727034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Myoelectric Control Scheme Supporting Synchronous Gesture Recognition and Muscle Force Estimation.
    Hu R; Chen X; Zhang H; Zhang X; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1127-1137. PubMed ID: 35412984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of electrode locations on limb condition effect for myoelectric pattern recognition.
    Wang H; Li N; Gao X; Jiang N; He J
    J Neuroeng Rehabil; 2024 Oct; 21(1):177. PubMed ID: 39363228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG.
    Asif AR; Waris A; Gilani SO; Jamil M; Ashraf H; Shafique M; Niazi IK
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limb Position Tolerant Pattern Recognition for Myoelectric Prosthesis Control with Adaptive Sparse Representations From Extreme Learning.
    Betthauser JL; Hunt CL; Osborn LE; Masters MR; Levay G; Kaliki RR; Thakor NV
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):770-778. PubMed ID: 28650804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Hand Gesture Recognition Robustness to Dynamic Posture Variations by Multimodal Deep Feature Fusion.
    Li J; Zhang B; Chen W; Bu C; Zhao Y; Zhao X
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3104-3115. PubMed ID: 39172614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From Forearm to Wrist: Deep Learning for Surface Electromyography-Based Gesture Recognition.
    He J; Niu X; Zhao P; Lin C; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():102-111. PubMed ID: 38064321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Verification-Based Design of a Robust EMG Wake Word.
    Kumar P; Phinyomark A; Scheme E
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():638-642. PubMed ID: 34891374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Stream Long Short-Term Memory Feature Fusion Classifier for Surface Electromyography Gesture Recognition.
    Zhang K; Badesa FJ; Liu Y; Ferre Pérez M
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Position-independent gesture recognition using sEMG signals via canonical correlation analysis.
    Cheng J; Wei F; Li C; Liu Y; Liu A; Chen X
    Comput Biol Med; 2018 Dec; 103():44-54. PubMed ID: 30340212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    J Neuroeng Rehabil; 2021 Feb; 18(1):35. PubMed ID: 33588868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on Gesture Recognition Method with Two-Stream Residual Network Fusing sEMG Signals and Acceleration Signals.
    Hu Z; Wang S; Ou C; Ge A; Li X
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing the number of EMG electrodes during online hand gesture classification with changing wrist positions.
    Pelaez Murciego L; Henrich MC; Spaich EG; Dosen S
    J Neuroeng Rehabil; 2022 Jul; 19(1):78. PubMed ID: 35864513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing online wrist and forearm EMG-based control using a rhythm game-inspired evaluation environment.
    Meredith R; Eddy E; Bateman S; Scheme E
    J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 39079541
    [No Abstract]   [Full Text] [Related]  

  • 20. Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations.
    Betthauser JL; Hunt CL; Osborn LE; Kaliki RR; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6373-6376. PubMed ID: 28325032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.