BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38722609)

  • 1. Getting to Know Named Entity Recognition: Better Information Retrieval.
    Zhang B
    Med Ref Serv Q; 2024; 43(2):196-202. PubMed ID: 38722609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What makes a gene name? Named entity recognition in the biomedical literature.
    Leser U; Hakenberg J
    Brief Bioinform; 2005 Dec; 6(4):357-69. PubMed ID: 16420734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of pre-trained language models for named entity recognition in clinical trial eligibility criteria from multiple corpora.
    Li J; Wei Q; Ghiasvand O; Chen M; Lobanov V; Weng C; Xu H
    BMC Med Inform Decis Mak; 2022 Sep; 22(Suppl 3):235. PubMed ID: 36068551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MLM-based typographical error correction of unstructured medical texts for named entity recognition.
    Lee EB; Heo GE; Choi CM; Song M
    BMC Bioinformatics; 2022 Nov; 23(1):486. PubMed ID: 36384464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised disentangled framework for transferable named entity recognition.
    Hao Z; Lv D; Li Z; Cai R; Wen W; Xu B
    Neural Netw; 2021 Mar; 135():127-138. PubMed ID: 33383527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review.
    Hossain E; Rana R; Higgins N; Soar J; Barua PD; Pisani AR; Turner K
    Comput Biol Med; 2023 Mar; 155():106649. PubMed ID: 36805219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeIDNER Corpus: Annotation of Clinical Discharge Summary Notes for Named Entity Recognition Using BRAT Tool.
    Syed M; Al-Shukri S; Syed S; Sexton K; Greer ML; Zozus M; Bhattacharyya S; Prior F
    Stud Health Technol Inform; 2021 May; 281():432-436. PubMed ID: 34042780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChemSpot: a hybrid system for chemical named entity recognition.
    Rocktäschel T; Weidlich M; Leser U
    Bioinformatics; 2012 Jun; 28(12):1633-40. PubMed ID: 22500000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel Data and Model Centric artificial intelligence based approach in developing high-performance Named Entity Recognition for Bengali Language.
    Lima KA; Md Hasib K; Azam S; Karim A; Montaha S; Noori SRH; Jonkman M
    PLoS One; 2023; 18(9):e0287818. PubMed ID: 37738251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Information extraction from multi-institutional radiology reports.
    Hassanpour S; Langlotz CP
    Artif Intell Med; 2016 Jan; 66():29-39. PubMed ID: 26481140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Deep Learning in Generating Structured Radiology Reports: A Transformer-Based Technique.
    Moezzi SAR; Ghaedi A; Rahmanian M; Mousavi SZ; Sami A
    J Digit Imaging; 2023 Feb; 36(1):80-90. PubMed ID: 36002778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical named entity recognition and relation extraction using natural language processing of medical free text: A systematic review.
    Fraile Navarro D; Ijaz K; Rezazadegan D; Rahimi-Ardabili H; Dras M; Coiera E; Berkovsky S
    Int J Med Inform; 2023 Sep; 177():105122. PubMed ID: 37295138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are synthetic clinical notes useful for real natural language processing tasks: A case study on clinical entity recognition.
    Li J; Zhou Y; Jiang X; Natarajan K; Pakhomov SV; Liu H; Xu H
    J Am Med Inform Assoc; 2021 Sep; 28(10):2193-2201. PubMed ID: 34272955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BANNER: an executable survey of advances in biomedical named entity recognition.
    Leaman R; Gonzalez G
    Pac Symp Biocomput; 2008; ():652-63. PubMed ID: 18229723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data.
    Sezgin E; Hussain SA; Rust S; Huang Y
    JMIR Form Res; 2023 Mar; 7():e43014. PubMed ID: 36881467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UMLS-based data augmentation for natural language processing of clinical research literature.
    Kang T; Perotte A; Tang Y; Ta C; Weng C
    J Am Med Inform Assoc; 2021 Mar; 28(4):812-823. PubMed ID: 33367705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the Natural Language Processing System Medical Named Entity Recognition-Japanese to Analyze Pharmaceutical Care Records: Natural Language Processing Analysis.
    Ohno Y; Kato R; Ishikawa H; Nishiyama T; Isawa M; Mochizuki M; Aramaki E; Aomori T
    JMIR Form Res; 2024 Jun; 8():e55798. PubMed ID: 38833694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations.
    Munkhdalai T; Li M; Batsuren K; Park HA; Choi NH; Ryu KH
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S9. PubMed ID: 25810780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes.
    Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ
    J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Various criteria in the evaluation of biomedical named entity recognition.
    Tsai RT; Wu SH; Chou WC; Lin YC; He D; Hsiang J; Sung TY; Hsu WL
    BMC Bioinformatics; 2006 Feb; 7():92. PubMed ID: 16504116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.