These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38722748)

  • 1. Surfactant-Assisted Förster Resonance Energy Transfer from a Quantum Dot Complex for Highly Stable White Light Emission.
    Singha S; Manna M; Pramanik S; Bhandari S
    J Phys Chem Lett; 2024 May; 15(19):5315-5322. PubMed ID: 38722748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant-mediated enhanced FRET from a quantum-dot complex for ratiometric sensing of food colorants.
    Singha S; Manna M; Das P; Pramanik S; Bhandari S
    Chem Commun (Camb); 2023 Oct; 59(84):12653-12656. PubMed ID: 37794815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronous Tricolor Emission-Based White Light from Quantum Dot Complex.
    Pramanik S; Bhandari S; Roy S; Chattopadhyay A
    J Phys Chem Lett; 2015 Apr; 6(7):1270-4. PubMed ID: 26262986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Ratiometric and Visual Sensing of Phosphate by White Light Emitting Quantum Dot Complex.
    Manna M; Roy S; Bhandari S; Chattopadhyay A
    Langmuir; 2021 May; 37(18):5506-5512. PubMed ID: 33928783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical insights into the facilitation of an unprecedented complexation reaction on the surface of a doped quantum dot leading to white light generation.
    Pramanik S; Manna M; Hudait B; Roy S; Bhandari S
    Phys Chem Chem Phys; 2021 Apr; 23(16):9860-9866. PubMed ID: 33908505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitonic enhancement of colour emission and Förster resonance energy transfer in chemically synthesized Mn-doped ZnS nanomaterials.
    Kumari L; Kar AK
    Dalton Trans; 2020 Dec; 49(46):16979-16992. PubMed ID: 33191422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-Free Estimation of Energy-Transfer Timescales in a Closely Emitting CdSe/ZnS Quantum Dot and Rhodamine 6G FRET Couple.
    Bharadwaj K; Koley S; Jana S; Ghosh S
    Chem Asian J; 2018 Nov; 13(21):3296-3303. PubMed ID: 30178522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Dot Donor-Polymer Acceptor Architecture for a FRET-Enabled Solar Cell.
    Kokal RK; Raavi SSK; Deepa M
    ACS Appl Mater Interfaces; 2019 May; 11(20):18395-18403. PubMed ID: 31045337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double channel emission from a redox active single component quantum dot complex.
    Bhandari S; Roy S; Pramanik S; Chattopadhyay A
    Langmuir; 2015 Jan; 31(1):551-61. PubMed ID: 25459633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Very High Brightness Quantum Dot Light-Emitting Devices via Enhanced Energy Transfer from a Phosphorescent Sensitizer.
    Zamani Siboni H; Sadeghimakki B; Sivoththaman S; Aziz H
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25828-34. PubMed ID: 26556102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle.
    Zhang J; Fu Y; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2007 Jan; 111(1):50-56. PubMed ID: 19079780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors.
    Chou KF; Dennis AM
    Sensors (Basel); 2015 Jun; 15(6):13288-325. PubMed ID: 26057041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forster resonance energy transfer assisted white light generation and luminescence tuning in a colloidal graphene quantum dot-dye system.
    Pramanik A; Biswas S; Tiwary CS; Kumbhakar P; Sarkar R; Kumbhakar P
    J Colloid Interface Sci; 2020 Apr; 565():326-336. PubMed ID: 31978795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the Förster Resonance Energy Transfer through a Self-Assembly Approach for Efficient White-Light Emission in an Aqueous Medium.
    Pallavi P; Sk B; Ahir P; Patra A
    Chemistry; 2018 Jan; 24(5):1151-1158. PubMed ID: 29136298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescent indicator for imaging lysosomal zinc(II) with Förster resonance energy transfer (FRET)-enhanced photostability and a narrow band of emission.
    Sreenath K; Yuan Z; Allen JR; Davidson MW; Zhu L
    Chemistry; 2015 Jan; 21(2):867-74. PubMed ID: 25382395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecularly imprinted polymer-coated CdTe quantum dot nanocomposite for tryptophan recognition based on the Förster resonance energy transfer process.
    Tirado-Guizar A; Paraguay-Delgado F; Pina-Luis GE
    Methods Appl Fluoresc; 2016 Nov; 4(4):045003. PubMed ID: 28192306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dot to quantum dot Förster resonance energy transfer: engineering materials for visual color change sensing.
    Chern M; Toufanian R; Dennis AM
    Analyst; 2020 Aug; 145(17):5754-5767. PubMed ID: 32715305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. White light generation using Förster resonance energy transfer between 3-hydroxyisoquinoline and Nile Red.
    Joshi NK; Polgar AM; Steer RP; Paige MF
    Photochem Photobiol Sci; 2016 May; 15(5):609-17. PubMed ID: 26928071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission.
    Sreenath K; Yuan Z; Allen JR; Davidson MW; Zhu L
    Chemistry; 2014 Nov; ():. PubMed ID: 25378058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly.
    Field LD; Walper SA; Susumu K; Oh E; Medintz IL; Delehanty JB
    Sensors (Basel); 2015 Dec; 15(12):30457-68. PubMed ID: 26690153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.