These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38722763)
1. Progress in the Optimization of Compositional Design and Thermomechanical Processing of Metastable β Ti Alloys for Biomedical Applications. C PR; N B KB; A RK; Shanmugam V; N S B; Sahani R; Behera L; A P; Thansekhar MR ACS Biomater Sci Eng; 2024 Jun; 10(6):3528-3547. PubMed ID: 38722763 [TBL] [Abstract][Full Text] [Related]
2. Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications. Bahl S; Das S; Suwas S; Chatterjee K J Mech Behav Biomed Mater; 2018 Feb; 78():124-133. PubMed ID: 29156291 [TBL] [Abstract][Full Text] [Related]
3. A Review: Design from Beta Titanium Alloys to Medium-Entropy Alloys for Biomedical Applications. Wong KK; Hsu HC; Wu SC; Ho WF Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959643 [TBL] [Abstract][Full Text] [Related]
4. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications. Nnamchi PS; Obayi CS; Todd I; Rainforth MW J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649 [TBL] [Abstract][Full Text] [Related]
5. Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti-Nb-based alloys for bone implants. Sheremetyev V; Petrzhik M; Zhukova Y; Kazakbiev A; Arkhipova A; Moisenovich M; Prokoshkin S; Brailovski V J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):647-662. PubMed ID: 31121090 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in the design of titanium alloys for orthopedic applications. Guillemot F Expert Rev Med Devices; 2005 Nov; 2(6):741-8. PubMed ID: 16293101 [TBL] [Abstract][Full Text] [Related]
7. Preparation, structural, microstructural, mechanical, and cytotoxic characterization of Ti-15Nb alloy for biomedical applications. Kuroda PAB; da Silva LM; Sousa KDSJ; Donato TAG; Grandini CR Artif Organs; 2020 Aug; 44(8):811-817. PubMed ID: 31876963 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of mechanical properties, in vitro corrosion resistance and biocompatibility of Gum Metal in the context of implant applications. Golasiński KM; Detsch R; Szklarska M; Łosiewicz B; Zubko M; Mackiewicz S; Pieczyska EA; Boccaccini AR J Mech Behav Biomed Mater; 2021 Mar; 115():104289. PubMed ID: 33388535 [TBL] [Abstract][Full Text] [Related]
9. Recent Advances and Prospects in β-type Titanium Alloys for Dental Implants Applications. Calazans Neto JV; Celles CAS; de Andrade CSAF; Afonso CRM; Nagay BE; Barão VAR ACS Biomater Sci Eng; 2024 Oct; 10(10):6029-6060. PubMed ID: 39215386 [TBL] [Abstract][Full Text] [Related]
10. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement. Biesiekierski A; Ping D; Li Y; Lin J; Munir KS; Yamabe-Mitarai Y; Wen C Acta Biomater; 2017 Apr; 53():549-558. PubMed ID: 28163238 [TBL] [Abstract][Full Text] [Related]
11. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
12. Development and characterization of Zn Dai S; Liao L; Khan MA; Feng Y; Yao W; Li J Acta Biomater; 2024 Jul; 182():126-138. PubMed ID: 38735374 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: A systematic review. Dias Corpa Tardelli J; Bolfarini C; Cândido Dos Reis A J Trace Elem Med Biol; 2020 Dec; 62():126618. PubMed ID: 32663743 [TBL] [Abstract][Full Text] [Related]
14. A novel titanium alloy for load-bearing biomedical implants: Evaluating the antibacterial and biocompatibility of Ti536 produced via electron beam powder bed fusion additive manufacturing process. Behjat A; Sanaei S; Mosallanejad MH; Atapour M; Sheikholeslam M; Saboori A; Iuliano L Biomater Adv; 2024 Oct; 163():213928. PubMed ID: 38941776 [TBL] [Abstract][Full Text] [Related]
15. Influence of thermomechanical processing on biomechanical compatibility and electrochemical behavior of new near beta alloy, Ti-20.6Nb-13.6Zr-0.5V. Mohammed MT; Khan ZA; Manivasagam G; Siddiquee AN Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):223-35. PubMed ID: 26491324 [TBL] [Abstract][Full Text] [Related]
16. Effects of Zr Addition on the Microstructural Evolution, Mechanical Properties, and Corrosion Behavior of Novel Biomedical Ti-Zr-Mo-Mn Alloys. Li Z; Wo J; Fu Y; Xu X; Wang B; Liu H; You D; Sun G; Li W; Wang X ACS Biomater Sci Eng; 2023 Dec; 9(12):6935-6946. PubMed ID: 37941371 [TBL] [Abstract][Full Text] [Related]
17. A more defective substrate leads to a less defective passive layer: Enhancing the mechanical strength, corrosion resistance and anti-inflammatory response of the low-modulus Ti-45Nb alloy by grain refinement. Hu N; Xie L; Liao Q; Gao A; Zheng Y; Pan H; Tong L; Yang D; Gao N; Starink MJ; Chu PK; Wang H Acta Biomater; 2021 May; 126():524-536. PubMed ID: 33684537 [TBL] [Abstract][Full Text] [Related]
18. Mechanical biocompatibilities of titanium alloys for biomedical applications. Niinomi M J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769 [TBL] [Abstract][Full Text] [Related]
19. Investigations into Ti-(Nb,Ta)-Fe alloys for biomedical applications. Biesiekierski A; Lin J; Li Y; Ping D; Yamabe-Mitarai Y; Wen C Acta Biomater; 2016 Mar; 32():336-347. PubMed ID: 26689463 [TBL] [Abstract][Full Text] [Related]
20. Nb-Ti-Zr alloys for orthopedic implants. Zhang T; Ou P; Ruan J; Yang H J Biomater Appl; 2021 May; 35(10):1284-1293. PubMed ID: 33148099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]