These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38722967)

  • 1. E-CLEAP: An ensemble learning model for efficient and accurate identification of antimicrobial peptides.
    Wang SC
    PLoS One; 2024; 19(5):e0300125. PubMed ID: 38722967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMP-RNNpro: a two-stage approach for identification of antimicrobials using probabilistic features.
    Shaon MSH; Karim T; Sultan MF; Ali MM; Ahmed K; Hasan MZ; Moustafa A; Bui FM; Al-Zahrani FA
    Sci Rep; 2024 Jun; 14(1):12892. PubMed ID: 38839785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMP-EBiLSTM: employing novel deep learning strategies for the accurate prediction of antimicrobial peptides.
    Wang Y; Wang L; Li C; Pei Y; Liu X; Tian Y
    Front Genet; 2023; 14():1232117. PubMed ID: 37554402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of cationic chicken liver-expressed antimicrobial peptide 2 in response to Salmonella enterica infection.
    Townes CL; Michailidis G; Nile CJ; Hall J
    Infect Immun; 2004 Dec; 72(12):6987-93. PubMed ID: 15557621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sense the moment: A highly sensitive antimicrobial activity predictor based on hydrophobic moment.
    Porto WF; Ferreira KCV; Ribeiro SM; Franco OL
    Biochim Biophys Acta Gen Subj; 2022 Mar; 1866(3):130070. PubMed ID: 34953809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. deepAMPNet: a novel antimicrobial peptide predictor employing AlphaFold2 predicted structures and a bi-directional long short-term memory protein language model.
    Zhao F; Qiu J; Xiang D; Jiao P; Cao Y; Xu Q; Qiao D; Xu H; Cao Y
    PeerJ; 2024; 12():e17729. PubMed ID: 39040937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model.
    Akbar S; Ahmad A; Hayat M; Rehman AU; Khan S; Ali F
    Comput Biol Med; 2021 Oct; 137():104778. PubMed ID: 34481183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation.
    Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ECAmyloid: An amyloid predictor based on ensemble learning and comprehensive sequence-derived features.
    Yang R; Liu J; Zhang L
    Comput Biol Chem; 2023 Jun; 104():107853. PubMed ID: 36990028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features.
    Singh O; Hsu WL; Su EC
    BMC Bioinformatics; 2021 Jul; 22(1):389. PubMed ID: 34330209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial peptides recognition using weighted physicochemical property encoding.
    Na S; Wannigama DL; Saethang T
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction.
    Lobanov MY; Slizen MV; Dovidchenko NV; Panfilov AV; Surin AA; Likhachev IV; Galzitskaya OV
    Mol Inform; 2024 May; 43(5):e202200181. PubMed ID: 36961202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous Machine Learning for the Identification of Antimicrobial Activity in Human-Targeted Drugs.
    Nava Lara RA; Aguilera-Mendoza L; Brizuela CA; Peña A; Del Rio G
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30935109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The antimicrobial peptide database is 20 years old: Recent developments and future directions.
    Wang G
    Protein Sci; 2023 Oct; 32(10):e4778. PubMed ID: 37695921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-enabled discovery and design of membrane-active peptides.
    Lee EY; Wong GCL; Ferguson AL
    Bioorg Med Chem; 2018 Jun; 26(10):2708-2718. PubMed ID: 28728899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides.
    Pandey P; Patel V; George NV; Mallajosyula SS
    J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.