These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38723089)

  • 1. A nasal chemosensation-dependent critical window for somatosensory development.
    Cai L; Argunşah AÖ; Damilou A; Karayannis T
    Science; 2024 May; 384(6696):652-660. PubMed ID: 38723089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early postnatal whisker deprivation cross-modally modulates prefrontal cortex myelination and leads to social novelty deficit.
    He Y; Liu J; Xiao H; Xiao L
    Brain Res; 2024 Nov; 1843():149136. PubMed ID: 39098577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatosensory and visual deprivation each decrease the density of parvalbumin neurons and their synapse terminals in the prefrontal cortex and hippocampus of mice.
    Ueno H; Shoshi C; Suemitsu S; Usui S; Sujiura H; Okamoto M
    Acta Med Okayama; 2013; 67(3):135-43. PubMed ID: 23804136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a Developmental Switch in Information Transfer between Whisker S1 and S2 Cortex in Mice.
    Cai L; Yang JW; Wang CF; Chou SJ; Luhmann HJ; Karayannis T
    J Neurosci; 2022 Jun; 42(22):4435-4448. PubMed ID: 35501157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neonatal whisker removal in rats stabilizes a transient projection from the auditory thalamus to the primary somatosensory cortex.
    Nicolelis MA; Chapin JK; Lin RC
    Brain Res; 1991 Dec; 567(1):133-9. PubMed ID: 1726139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception.
    Staiger JF; Petersen CCH
    Physiol Rev; 2021 Jan; 101(1):353-415. PubMed ID: 32816652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subtype-specific critical period for neurogenesis in the postnatal development of mouse olfactory glomeruli.
    Kato Y; Kaneko N; Sawada M; Ito K; Arakawa S; Murakami S; Sawamoto K
    PLoS One; 2012; 7(11):e48431. PubMed ID: 23133633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrissae-evoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex.
    Landers MS; Sullivan RM
    J Neurosci; 1999 Jun; 19(12):5131-7. PubMed ID: 10366646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-modal refinement of visual performance after brief somatosensory deprivation in adult mice.
    Teichert M; Isstas M; Wenig S; Setz C; Lehmann K; Bolz J
    Eur J Neurosci; 2018 Jan; 47(2):184-191. PubMed ID: 29247462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and sensory experience dependent regulation of microglia in barrel cortex.
    Kalambogias J; Chen CC; Khan S; Son T; Wercberger R; Headlam C; Lin C; Brumberg JC
    J Comp Neurol; 2020 Mar; 528(4):559-573. PubMed ID: 31502243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Non-canonical Feedback Circuit for Rapid Interactions between Somatosensory Cortices.
    Minamisawa G; Kwon SE; Chevée M; Brown SP; O'Connor DH
    Cell Rep; 2018 May; 23(9):2718-2731.e6. PubMed ID: 29847801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of developmental sensory and motor deprivation on the functional organization of adult rat somatosensory cortex.
    Erchova IA; Petersen RS; Diamond ME
    Brain Res Bull; 2003 May; 60(4):373-86. PubMed ID: 12781325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatotopic Organization and Temporal Characteristics of Cerebrocortical Excitation in Response to Nasal Mucosa Stimulation With and Without an Odor in the Rat: An Optical Imaging Study.
    Zama M; Hara Y; Fujita S; Kaneko T; Kobayashi M
    Neuroscience; 2018 May; 377():77-86. PubMed ID: 29518532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neonatal whisker clipping alters behavior, neuronal structure and neural activity in adult rats.
    Chu YF; Yen CT; Lee LJ
    Behav Brain Res; 2013 Feb; 238():124-33. PubMed ID: 23098795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices.
    Zheng JJ; Li SJ; Zhang XD; Miao WY; Zhang D; Yao H; Yu X
    Nat Neurosci; 2014 Mar; 17(3):391-9. PubMed ID: 24464043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neonatal whisker trimming causes long-lasting changes in structure and function of the somatosensory system.
    Lee LJ; Chen WJ; Chuang YW; Wang YC
    Exp Neurol; 2009 Oct; 219(2):524-32. PubMed ID: 19619534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HDAC1 negatively regulates Bdnf and Pvalb required for parvalbumin interneuron maturation in an experience-dependent manner.
    Koh DX; Sng JC
    J Neurochem; 2016 Nov; 139(3):369-380. PubMed ID: 27534825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex.
    Chen CC; Tam D; Brumberg JC
    Brain Struct Funct; 2012 Apr; 217(2):435-46. PubMed ID: 21861159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional mapping of the primary somatosensory cortex upon sensory deprivation.
    Kole K; Komuro Y; Provaznik J; Pistolic J; Benes V; Tiesinga P; Celikel T
    Gigascience; 2017 Oct; 6(10):1-6. PubMed ID: 29020745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Morphological Factors Underlie Experience-Dependent Cross-Modal Plasticity in the Developing Sensory Cortices.
    Wang M; Yu Z; Li G; Yu X
    Cereb Cortex; 2020 Apr; 30(4):2418-2433. PubMed ID: 31828301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.