These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38723158)

  • 1. Advances in Electrochemical Liquid-Phase Transmission Electron Microscopy for Visualizing Rechargeable Battery Reactions.
    Hu H; Yang R; Zeng Z
    ACS Nano; 2024 May; 18(20):12598-12609. PubMed ID: 38723158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes.
    Yang R; Mei L; Fan Y; Zhang Q; Liao HG; Yang J; Li J; Zeng Z
    Nat Protoc; 2023 Feb; 18(2):555-578. PubMed ID: 36333447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Electrochemistry of Rechargeable Battery Materials: Status Report and Perspectives.
    Yang Y; Liu X; Dai Z; Yuan F; Bando Y; Golberg D; Wang X
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28627135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Transmission Electron Microscopy for Energy Materials and Devices.
    Fan Z; Zhang L; Baumann D; Mei L; Yao Y; Duan X; Shi Y; Huang J; Huang Y; Duan X
    Adv Mater; 2019 Aug; 31(33):e1900608. PubMed ID: 31183914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy.
    Abellan P; Mehdi BL; Parent LR; Gu M; Park C; Xu W; Zhang Y; Arslan I; Zhang JG; Wang CM; Evans JE; Browning ND
    Nano Lett; 2014 Mar; 14(3):1293-9. PubMed ID: 24559146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ TEM Study on Conversion-Type Electrodes for Rechargeable Ion Batteries.
    Cui J; Zheng H; He K
    Adv Mater; 2021 Feb; 33(6):e2000699. PubMed ID: 32578290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of electron microscopic observations to electrochemistry in liquid electrolytes for batteries.
    Yoshida K; Sasaki Y; Kuwabara A; Ikuhara Y
    Microscopy (Oxf); 2024 Apr; 73(2):154-168. PubMed ID: 37698551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research.
    Hodnik N; Dehm G; Mayrhofer KJ
    Acc Chem Res; 2016 Sep; 49(9):2015-22. PubMed ID: 27541965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid cell electrochemical TEM: Unveiling the real-time interfacial reactions of advanced Li-metal batteries.
    Zhou S; Zheng Q; Tang S; Sun SG; Liao HG
    J Chem Phys; 2022 Dec; 157(23):230901. PubMed ID: 36550040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries.
    Karakulina OM; Demortière A; Dachraoui W; Abakumov AM; Hadermann J
    Nano Lett; 2018 Oct; 18(10):6286-6291. PubMed ID: 30193062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms.
    Wang X; Weng Q; Yang Y; Bando Y; Golberg D
    Chem Soc Rev; 2016 Aug; 45(15):4042-73. PubMed ID: 27196691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, fabrication, and applications of in situ fluid cell TEM.
    Li D; Nielsen MH; De Yoreo JJ
    Methods Enzymol; 2013; 532():147-64. PubMed ID: 24188766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid cell transmission electron microscopy and its applications.
    Pu S; Gong C; Robertson AW
    R Soc Open Sci; 2020 Jan; 7(1):191204. PubMed ID: 32218950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy.
    Liu P; Han J; Guo X; Ito Y; Yang C; Ning S; Fujita T; Hirata A; Chen M
    Sci Rep; 2018 Feb; 8(1):3134. PubMed ID: 29453422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in
    Qu J; Sui M; Li R
    iScience; 2023 Jul; 26(7):107072. PubMed ID: 37534164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing the Sensitive Lithium with Atomic Precision: Cryogenic Electron Microscopy for Batteries.
    Liu Y; Ju Z; Zhang B; Wang Y; Nai J; Liu T; Tao X
    Acc Chem Res; 2021 May; 54(9):2088-2099. PubMed ID: 33856759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy.
    Yuk JM; Seo HK; Choi JW; Lee JY
    ACS Nano; 2014 Jul; 8(7):7478-85. PubMed ID: 24980889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries.
    Gu L; Xiao D; Hu YS; Li H; Ikuhara Y
    Adv Mater; 2015 Apr; 27(13):2134-49. PubMed ID: 25677246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO
    Gong Y; Zhang J; Jiang L; Shi JA; Zhang Q; Yang Z; Zou D; Wang J; Yu X; Xiao R; Hu YS; Gu L; Li H; Chen L
    J Am Chem Soc; 2017 Mar; 139(12):4274-4277. PubMed ID: 28274118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.