These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38723335)
1. Pre-crash scenarios for safety testing of autonomous vehicles: A clustering method for in-depth crash data. Huang H; Huang X; Zhou R; Zhou H; Lee JJ; Cen X Accid Anal Prev; 2024 Aug; 203():107616. PubMed ID: 38723335 [TBL] [Abstract][Full Text] [Related]
2. Identifying typical pre-crash scenarios based on in-depth crash data with deep embedded clustering for autonomous vehicle safety testing. Zhou R; Huang H; Lee J; Huang X; Chen J; Zhou H Accid Anal Prev; 2023 Oct; 191():107218. PubMed ID: 37467602 [TBL] [Abstract][Full Text] [Related]
3. How would autonomous vehicles behave in real-world crash scenarios? Zhou R; Zhang G; Huang H; Wei Z; Zhou H; Jin J; Chang F; Chen J Accid Anal Prev; 2024 Jul; 202():107572. PubMed ID: 38657314 [TBL] [Abstract][Full Text] [Related]
4. Autonomous driving testing scenario generation based on in-depth vehicle-to-powered two-wheeler crash data in China. Wang X; Peng Y; Xu T; Xu Q; Wu X; Xiang G; Yi S; Wang H Accid Anal Prev; 2022 Oct; 176():106812. PubMed ID: 36054982 [TBL] [Abstract][Full Text] [Related]
5. Study of typical electric two-wheelers pre-crash scenarios using K-medoids clustering methodology based on video recordings in China. Pan D; Han Y; Jin Q; Wu H; Huang H Accid Anal Prev; 2021 Sep; 160():106320. PubMed ID: 34358751 [TBL] [Abstract][Full Text] [Related]
6. A clustering approach to developing car-to-two-wheeler test scenarios for the assessment of Automated Emergency Braking in China using in-depth Chinese crash data. Sui B; Lubbe N; Bärgman J Accid Anal Prev; 2019 Nov; 132():105242. PubMed ID: 31446097 [TBL] [Abstract][Full Text] [Related]
7. Pre-crash scenarios at road junctions: A clustering method for car crash data. Nitsche P; Thomas P; Stuetz R; Welsh R Accid Anal Prev; 2017 Oct; 107():137-151. PubMed ID: 28841448 [TBL] [Abstract][Full Text] [Related]
8. Mining and comparative analysis of typical pre-crash scenarios from IGLAD. Hu W; Xu X; Zhou Z; Liu Y; Wang Y; Xiao L; Qian X Accid Anal Prev; 2020 Sep; 145():105699. PubMed ID: 32771693 [TBL] [Abstract][Full Text] [Related]
9. High-risk powered two-wheelers scenarios generation for autonomous vehicle testing using WGAN. Luo X; Wei Z; Zhang G; Huang H; Zhou R Traffic Inj Prev; 2024 Oct; ():1-9. PubMed ID: 39405428 [TBL] [Abstract][Full Text] [Related]
10. Evaluating automated emergency braking performance in simulated car-to-two-wheeler crashes in China: A comparison between C-NCAP tests and in-depth crash data. Sui B; Lubbe N; Bärgman J Accid Anal Prev; 2021 Sep; 159():106229. PubMed ID: 34225169 [TBL] [Abstract][Full Text] [Related]
11. Research of fatal car-to-pedestrian precrash scenarios for the testing of the active safety system in China. Tan Z; Che Y; Xiao L; Hu W; Li P; Xu J Accid Anal Prev; 2021 Feb; 150():105857. PubMed ID: 33285448 [TBL] [Abstract][Full Text] [Related]
12. Safety in higher level automated vehicles: Investigating edge cases in crashes of vehicles equipped with automated driving systems. Moradloo N; Mahdinia I; Khattak AJ Accid Anal Prev; 2024 Aug; 203():107607. PubMed ID: 38723333 [TBL] [Abstract][Full Text] [Related]
13. Crash comparison of autonomous and conventional vehicles using pre-crash scenario typology. Liu Q; Wang X; Wu X; Glaser Y; He L Accid Anal Prev; 2021 Sep; 159():106281. PubMed ID: 34273622 [TBL] [Abstract][Full Text] [Related]
14. Trajectory planning framework for autonomous vehicles based on collision injury prediction for vulnerable road users. Guo Y; Liu Y; Wang B; Huang P; Xu H; Bai Z Accid Anal Prev; 2024 Aug; 203():107610. PubMed ID: 38749269 [TBL] [Abstract][Full Text] [Related]
15. Causation analysis of crashes and near crashes using naturalistic driving data. Wang X; Liu Q; Guo F; Fang S; Xu X; Chen X Accid Anal Prev; 2022 Nov; 177():106821. PubMed ID: 36055150 [TBL] [Abstract][Full Text] [Related]
16. Analysis of pre-crash scenarios and contributing factors for autonomous vehicle crashes at intersections. Liu Q; Wang X; Liu S; Yu C; Glaser Y Accid Anal Prev; 2024 Feb; 195():107383. PubMed ID: 37984113 [TBL] [Abstract][Full Text] [Related]
17. Advancing investigation of automated vehicle crashes using text analytics of crash narratives and Bayesian analysis. Lee S; Arvin R; Khattak AJ Accid Anal Prev; 2023 Mar; 181():106932. PubMed ID: 36580765 [TBL] [Abstract][Full Text] [Related]
18. The potential of clustering methods to define intersection test scenarios: Assessing real-life performance of AEB. Sander U; Lubbe N Accid Anal Prev; 2018 Apr; 113():1-11. PubMed ID: 29355748 [TBL] [Abstract][Full Text] [Related]
19. Assessing the potential benefits of the motorcycle autonomous emergency braking using detailed crash reconstructions. Savino G; Giovannini F; Baldanzini N; Pierini M; Rizzi M Traffic Inj Prev; 2013; 14 Suppl():S40-9. PubMed ID: 23905921 [TBL] [Abstract][Full Text] [Related]
20. Development of freeway-based test scenarios for applying new car assessment program to automated vehicles. Ko W; Park S; Park S; Jeong H; Yun I PLoS One; 2022; 17(7):e0271532. PubMed ID: 35862304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]