These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38723353)
1. Effects of salinity on glycerol conversion and biological phosphorus removal by aerobic granular sludge. Elahinik A; de Clercq F; Pabst M; Xevgenos D; van Loosdrecht MCM; Pronk M Water Res; 2024 Jun; 257():121737. PubMed ID: 38723353 [TBL] [Abstract][Full Text] [Related]
2. Biological phosphorus removal in seawater-adapted aerobic granular sludge. de Graaff DR; van Loosdrecht MCM; Pronk M Water Res; 2020 Apr; 172():115531. PubMed ID: 32004912 [TBL] [Abstract][Full Text] [Related]
3. Trehalose as an osmolyte in Candidatus Accumulibacter phosphatis. de Graaff DR; van Loosdrecht MCM; Pronk M Appl Microbiol Biotechnol; 2021 Jan; 105(1):379-388. PubMed ID: 33074418 [TBL] [Abstract][Full Text] [Related]
4. Glycerol conversion by aerobic granular sludge. Elahinik A; Haarsma M; Abbas B; Pabst M; Xevgenos D; van Loosdrecht MCM; Pronk M Water Res; 2022 Dec; 227():119340. PubMed ID: 36395566 [TBL] [Abstract][Full Text] [Related]
5. Elevated salinity deteriorated enhanced biological phosphorus removal in an aerobic granular sludge sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. He Q; Wang H; Chen L; Gao S; Zhang W; Song J; Yu J J Hazard Mater; 2020 May; 390():121782. PubMed ID: 32014652 [TBL] [Abstract][Full Text] [Related]
6. Pilot-scale aerobic granular sludge reactors with granular activated carbon for effective nitrogen and phosphorus removal from domestic wastewater. Nancharaiah YV; Sarvajith M; Mohan TVK Sci Total Environ; 2023 Oct; 894():164822. PubMed ID: 37331394 [TBL] [Abstract][Full Text] [Related]
7. Does the feeding strategy enhance the aerobic granular sludge stability treating saline effluents? Carrera P; Campo R; Méndez R; Di Bella G; Campos JL; Mosquera-Corral A; Val Del Rio A Chemosphere; 2019 Jul; 226():865-873. PubMed ID: 30978598 [TBL] [Abstract][Full Text] [Related]
8. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
9. Utilizing anaerobic substrate distribution for growth of aerobic granular sludge in continuous-flow reactors. Haaksman VA; van Dijk EJH; Al-Zuhairy S; Mulders M; Loosdrecht MCMV; Pronk M Water Res; 2024 Jun; 257():121531. PubMed ID: 38701553 [TBL] [Abstract][Full Text] [Related]
10. Impact of salinity on the aerobic metabolism of phosphate-accumulating organisms. Welles L; Lopez-Vazquez CM; Hooijmans CM; van Loosdrecht MC; Brdjanovic D Appl Microbiol Biotechnol; 2015 Apr; 99(8):3659-72. PubMed ID: 25524698 [TBL] [Abstract][Full Text] [Related]
11. De novo granulation of sewage-borne microorganisms: A proof of concept on cultivating aerobic granular sludge without activated sludge and effective enhanced biological phosphorus removal. Sarvajith M; Nancharaiah YV Environ Res; 2023 May; 224():115500. PubMed ID: 36791839 [TBL] [Abstract][Full Text] [Related]
12. Effects of oxytetracycline on aerobic granular sludge process: Granulation, biological nutrient removal and microbial community structure. Nivedhita S; Shyni Jasmin P; Sarvajith M; Nancharaiah YV Chemosphere; 2022 Nov; 307(Pt 4):136103. PubMed ID: 35995202 [TBL] [Abstract][Full Text] [Related]
13. Performance and stability of a dynamically controlled EBPR anaerobic/aerobic granular sludge reactor. De Vleeschauwer F; Caluwé M; Dobbeleers T; Stes H; Dockx L; Kiekens F; D'aes J; Copot C; Dries J Bioresour Technol; 2019 May; 280():151-157. PubMed ID: 30771569 [TBL] [Abstract][Full Text] [Related]
14. Impact of aerobic availability of readily biodegradable COD on morphological stability of aerobic granular sludge. Haaksman VA; Mirghorayshi M; van Loosdrecht MCM; Pronk M Water Res; 2020 Dec; 187():116402. PubMed ID: 32956938 [TBL] [Abstract][Full Text] [Related]
15. Enhanced aerobic granulation at low temperature by stepwise increasing of salinity. Li J; Ma Z; Gao M; Wang Y; Yang Z; Xu H; Wang XH Sci Total Environ; 2020 Jun; 722():137660. PubMed ID: 32179296 [TBL] [Abstract][Full Text] [Related]
16. Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge. Wang Z; van Loosdrecht MCM; Saikaly PE Water Res; 2017 Nov; 124():702-712. PubMed ID: 28829972 [TBL] [Abstract][Full Text] [Related]
17. Long-term stability of a non-adapted aerobic granular sludge process treating fish canning wastewater associated to EPS producers in the core microbiome. Paulo AMS; Amorim CL; Costa J; Mesquita DP; Ferreira EC; Castro PML Sci Total Environ; 2021 Feb; 756():144007. PubMed ID: 33250239 [TBL] [Abstract][Full Text] [Related]
18. Stable granulation of seawater-adapted aerobic granular sludge with filamentous Thiothrix bacteria. de Graaff DR; van Loosdrecht MCM; Pronk M Water Res; 2020 May; 175():115683. PubMed ID: 32179272 [TBL] [Abstract][Full Text] [Related]
19. Aerobic granular sludge phosphate removal using glucose. Elahinik A; Li L; Pabst M; Abbas B; Xevgenos D; van Loosdrecht MCM; Pronk M Water Res; 2023 Dec; 247():120776. PubMed ID: 37898002 [TBL] [Abstract][Full Text] [Related]
20. Start-up of an aerobic granular sludge system from stored granules: Evaluating the impact of storage period on biomass activity and stability and the effect of temperature on nitrification and phosphorus removal rates. Duarte KLS; Castellanos RM; Costa RC; Mahler CF; Bassin JP J Environ Manage; 2021 Oct; 296():113200. PubMed ID: 34284343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]