These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3872344)

  • 1. Distribution of particle aggregates in the internodal axolemma and adaxonal Schwann cell membrane of rodent peripheral nerve.
    Stolinski C; Breathnach AS; Thomas PK; Gabriel G; King RH
    J Neurol Sci; 1985 Feb; 67(2):213-22. PubMed ID: 3872344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associated particle aggregates in juxtaparanodal axolemma and adaxonal Schwann cell membrane of rat peripheral nerve.
    Stolinski C; Breathnach AS; Martin B; Thomas PK; King RH; Gabriel G
    J Neurocytol; 1981 Aug; 10(4):679-91. PubMed ID: 6975804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane specializations and cytoplasmic channels of Schwann cells in mammalian peripheral nerve as seen in freeze-fracture replicas.
    Kruger L; Stolinski C; Martin BG; Gross MB
    J Comp Neurol; 1979 Aug; 186(4):571-601. PubMed ID: 15116690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of filipin-sterol complexes in the unmyelinated nerve fibre.
    Allt G; Blanchard CE; Sikri K
    Brain Res; 1987 Jul; 416(1):166-70. PubMed ID: 3620951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quaking mouse: an ultrastructural study of the peripheral nerves.
    Suzuki K; Zagoren JC
    J Neurocytol; 1977 Feb; 6(1):71-84. PubMed ID: 190360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunocytochemical studies of quaking mice support a role for the myelin-associated glycoprotein in forming and maintaining the periaxonal space and periaxonal cytoplasmic collar of myelinating Schwann cells.
    Trapp BD; Quarles RH; Suzuki K
    J Cell Biol; 1984 Aug; 99(2):594-606. PubMed ID: 6204994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunocytochemical localization of the myelin-associated glycoprotein. Fact or artifact?
    Trapp BD; Quarles RH
    J Neuroimmunol; 1984 Jul; 6(4):231-49. PubMed ID: 6203932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connexin32-containing gap junctions in Schwann cells at the internodal zone of partial myelin compaction and in Schmidt-Lanterman incisures.
    Meier C; Dermietzel R; Davidson KG; Yasumura T; Rash JE
    J Neurosci; 2004 Mar; 24(13):3186-98. PubMed ID: 15056698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nodes of Ranvier and Schmidt-Lanterman incisures: an in vivo lanthanum tracer study.
    MacKenzie ML; Ghabriel MN; Allt G
    J Neurocytol; 1984 Dec; 13(6):1043-55. PubMed ID: 6534973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of protein 4.1G in Schwann cells of the peripheral nervous system.
    Ohno N; Terada N; Yamakawa H; Komada M; Ohara O; Trapp BD; Ohno S
    J Neurosci Res; 2006 Aug; 84(3):568-77. PubMed ID: 16752423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle rosettes in the periaxonal Schwann cell membrane and particle clusters in the axolemma of rat sciatic nerve.
    Miller RG; Pinto da Silva P
    Brain Res; 1977 Jul; 130(1):135-41. PubMed ID: 884515
    [No Abstract]   [Full Text] [Related]  

  • 12. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve.
    Martini R; Schachner M
    J Cell Biol; 1986 Dec; 103(6 Pt 1):2439-48. PubMed ID: 2430983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-fracture observations on human peripheral nerve.
    Gabriel G; Thomas PK; King RH; Stolinski C; Breathnach AS
    J Anat; 1986 Jun; 146():153-66. PubMed ID: 3693055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internodal microvillus-like Schwann cell fingers in myelinated fibres in mouse spinal roots.
    Ishii H; Suzuki K; Aikawa H; Nonaka I
    J Neurocytol; 1985 Apr; 14(2):261-7. PubMed ID: 4045506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axolemmal differentiation in myelinated fibers of rat peripheral nerves.
    Tao-Cheng JH; Rosenbluth J
    Brain Res; 1983 Sep; 285(3):251-63. PubMed ID: 6627022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of morphological variation within myelin internodes of normal peripheral nerve: quantitative analysis by confocal microscopy.
    Reynolds RJ; Heath JW
    J Anat; 1995 Oct; 187 ( Pt 2)(Pt 2):369-78. PubMed ID: 7592000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Schwann cell plasma membrane changes induced by nerve crush. A freeze-fracture study.
    Abrahams PH; Day A; Allt G
    Acta Neuropathol; 1980; 50(2):85-90. PubMed ID: 7395471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rat optic nerve: freeze-fracture studies during development of myelinated axons.
    Black JA; Foster RE; Waxman SG
    Brain Res; 1982 Oct; 250(1):1-20. PubMed ID: 7139310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localizations of ruthenium red positive material in rabbit peripheral nerves.
    Dolapchieva S; Ovtscharoff W; Ichev K
    Acta Histochem; 1986; 78(1):19-30. PubMed ID: 2421514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caspr and caspr2 are required for both radial and longitudinal organization of myelinated axons.
    Gordon A; Adamsky K; Vainshtein A; Frechter S; Dupree JL; Rosenbluth J; Peles E
    J Neurosci; 2014 Nov; 34(45):14820-6. PubMed ID: 25378149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.