These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 38723494)
1. Forecasting carbon prices in China's pilot carbon market: A multi-source information approach with conditional generative adversarial networks. Huang Z; Zhang W J Environ Manage; 2024 May; 359():120967. PubMed ID: 38723494 [TBL] [Abstract][Full Text] [Related]
2. Multi-step-ahead and interval carbon price forecasting using transformer-based hybrid model. Yue W; Zhong W; Xiaoyi W; Xinyu K Environ Sci Pollut Res Int; 2023 Sep; 30(42):95692-95719. PubMed ID: 37558913 [TBL] [Abstract][Full Text] [Related]
3. A hybrid forecasting approach for China's national carbon emission allowance prices with balanced accuracy and interpretability. Mao Y; Yu X J Environ Manage; 2024 Feb; 351():119873. PubMed ID: 38159311 [TBL] [Abstract][Full Text] [Related]
4. A New Grey Relational Analysis Model Based on the Characteristic of Inscribed Core (IC-GRA) and Its Application on Seven-Pilot Carbon Trading Markets of China. Wang L; Yin K; Cao Y; Li X Int J Environ Res Public Health; 2018 Dec; 16(1):. PubMed ID: 30602701 [TBL] [Abstract][Full Text] [Related]
5. Carbon price forecasting: a novel deep learning approach. Zhang F; Wen N Environ Sci Pollut Res Int; 2022 Aug; 29(36):54782-54795. PubMed ID: 35306656 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the transmission characteristics of China's carbon market transaction price volatility from the perspective of a complex network. Jia J; Li H; Zhou J; Jiang M; Dong D Environ Sci Pollut Res Int; 2018 Mar; 25(8):7369-7381. PubMed ID: 29275485 [TBL] [Abstract][Full Text] [Related]
7. Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine. Chai S; Zhang Z; Zhang Z Ann Oper Res; 2021 Nov; ():1-22. PubMed ID: 34812214 [TBL] [Abstract][Full Text] [Related]
8. A two-stage interval-valued carbon price forecasting model based on bivariate empirical mode decomposition and error correction. Wang P; Chudhery MAZ; Xu J; Zhao X; Wang C Environ Sci Pollut Res Int; 2023 Jul; 30(32):78262-78278. PubMed ID: 37269510 [TBL] [Abstract][Full Text] [Related]
9. Forecasting Carbon Price in China: A Multimodel Comparison. Li H; Huang X; Zhou D; Cao A; Su M; Wang Y; Guo L Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627753 [TBL] [Abstract][Full Text] [Related]
10. Framework for multivariate carbon price forecasting: A novel hybrid model. Zhang X; Zong Y; Du P; Wang S; Wang J J Environ Manage; 2024 Oct; 369():122275. PubMed ID: 39217908 [TBL] [Abstract][Full Text] [Related]
11. Point and interval forecasting for carbon trading price: a case of 8 carbon trading markets in China. Zhao Y; Zhao H; Li B; Wu B; Guo S Environ Sci Pollut Res Int; 2023 Apr; 30(17):49075-49096. PubMed ID: 36763267 [TBL] [Abstract][Full Text] [Related]
12. Carbon price prediction based on multiple decomposition and XGBoost algorithm. Xu K; Xia Z; Cheng M; Tan X Environ Sci Pollut Res Int; 2023 Aug; 30(38):89165-89179. PubMed ID: 37442936 [TBL] [Abstract][Full Text] [Related]
13. Probabilistic carbon price prediction with quantile temporal convolutional network considering uncertain factors. Cao Y; Zha D; Wang Q; Wen L J Environ Manage; 2023 Sep; 342():118137. PubMed ID: 37178463 [TBL] [Abstract][Full Text] [Related]
14. Analysis of China's carbon market price fluctuation and international carbon credit financing mechanism using random forest model. Song C PLoS One; 2024; 19(3):e0294269. PubMed ID: 38452012 [TBL] [Abstract][Full Text] [Related]
15. A novel hybrid learning paradigm with feature extraction for carbon price prediction based on Bi-directional long short-term memory network optimized by an improved sparrow search algorithm. Zhou J; Xu Z; Wang S Environ Sci Pollut Res Int; 2022 Sep; 29(43):65585-65598. PubMed ID: 35488159 [TBL] [Abstract][Full Text] [Related]
16. A novel carbon price forecasting method based on model matching, adaptive decomposition, and reinforcement learning ensemble strategy. Cao Z; Liu H Environ Sci Pollut Res Int; 2023 Mar; 30(13):36044-36067. PubMed ID: 36539662 [TBL] [Abstract][Full Text] [Related]
17. The price behavior characteristics of China and Europe carbon emission trading market based on the perspective of time scaling and expected returns. Zhang PC; Cheng J PLoS One; 2024; 19(2):e0298265. PubMed ID: 38354131 [TBL] [Abstract][Full Text] [Related]
18. Construction of a carbon price benchmark in China-analysis of eight pilot markets. Yang J; Dong H; Shackman JD; Yuan J Environ Sci Pollut Res Int; 2022 Jun; 29(27):41309-41328. PubMed ID: 35088276 [TBL] [Abstract][Full Text] [Related]
19. Forecasting Carbon Price Using Double Shrinkage Methods. Wei X; Ouyang H Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36674257 [TBL] [Abstract][Full Text] [Related]
20. Forecasting China carbon price using an error-corrected secondary decomposition hybrid model integrated fuzzy dispersion entropy and deep learning paradigm. Yun P; Zhou Y; Liu C; Wu Y; Pan D Environ Sci Pollut Res Int; 2024 Mar; 31(11):16530-16553. PubMed ID: 38321281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]