These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 38723494)

  • 21. The role of online news sentiment in carbon price prediction of China's carbon markets.
    Liu M; Ying Q
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41379-41387. PubMed ID: 36627425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting regional carbon price in China based on multi-factor HKELM by combining secondary decomposition and ensemble learning.
    Hu B; Cheng Y
    PLoS One; 2023; 18(12):e0285311. PubMed ID: 38085727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stock Price Forecasting by a Deep Convolutional Generative Adversarial Network.
    Staffini A
    Front Artif Intell; 2022; 5():837596. PubMed ID: 35187477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SF-Transformer: A Mutual Information-Enhanced Transformer Model with Spot-Forward Parity for Forecasting Long-Term Chinese Stock Index Futures Prices.
    Mao W; Liu P; Huang J
    Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-varying spillovers among pilot carbon emission trading markets in China.
    Xiao Z; Ma S; Sun H; Ren J; Feng C; Cui S
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57421-57436. PubMed ID: 35349066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The efficiency of carbon trading market in China: evidence from variance ratio tests.
    Zhou J; Huo X; Jin B; Yu X
    Environ Sci Pollut Res Int; 2019 May; 26(14):14362-14372. PubMed ID: 30868455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon trading and COVID-19: a hybrid machine learning approach for international carbon price forecasting.
    Zhang X; Li Z; Zhao Y; Wang L
    Ann Oper Res; 2023 Apr; ():1-29. PubMed ID: 37361057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breaking through the limitation of carbon price forecasting: A novel hybrid model based on secondary decomposition and nonlinear integration.
    Lan Y; Huangfu Y; Huang Z; Zhang C
    J Environ Manage; 2024 Jun; 362():121253. PubMed ID: 38823294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A prediction model of stock market trading actions using generative adversarial network and piecewise linear representation approaches.
    Wu JL; Tang XR; Hsu CH
    Soft comput; 2023; 27(12):8209-8222. PubMed ID: 36531755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An optimized decomposition integration framework for carbon price prediction based on multi-factor two-stage feature dimension reduction.
    Xu W; Wang J; Zhang Y; Li J; Wei L
    Ann Oper Res; 2022 Jul; ():1-38. PubMed ID: 35875369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A carbon price hybrid forecasting model based on data multi-scale decomposition and machine learning.
    Yang P; Wang Y; Zhao S; Chen Z; Li Y
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):3252-3269. PubMed ID: 35943654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do the performance and efficiency of China's carbon emission trading market change over time?
    Zhang S; Jiang K; Wang L; Bongers G; Hu G; Li J
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):33140-33160. PubMed ID: 32529608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How can carbon trading price distortion be corrected? An empirical study from China's carbon trading pilot markets.
    Wu L
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):66253-66271. PubMed ID: 34331643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon price forecasting using multiscale nonlinear integration model coupled optimal feature reconstruction with biphasic deep learning.
    Wang J; Cheng Q; Sun X
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):85988-86004. PubMed ID: 34453680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Empirical analysis of the relationship between carbon trading price and stock price of high carbon emitting firms based on VAR model - evidence from Chinese listed companies.
    Song Y; Liu Y
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):1146-1157. PubMed ID: 38038913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid deep learning models with multi-classification investor sentiment to forecast the prices of China's leading stocks.
    Niu H; Pan Q; Xu K
    PLoS One; 2023; 18(11):e0294460. PubMed ID: 38011183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon price prediction based on a scaled PCA approach.
    Wei X; Ouyang H
    PLoS One; 2024; 19(1):e0296105. PubMed ID: 38165874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-dimensional nonlinear dependence and risk spillovers analysis between China's carbon market and its major influence factors.
    Zhang S; Ji H; Tian M; Wang B
    Ann Oper Res; 2022 Jun; ():1-30. PubMed ID: 35694370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heteroscedasticity effects as component to future stock market predictions using RNN-based models.
    Sadon AN; Ismail S; Khamis A; Tariq MU
    PLoS One; 2024; 19(5):e0297641. PubMed ID: 38787874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling opening price spread of Shanghai Composite Index based on ARIMA-GRU/LSTM hybrid model.
    Si Y; Nadarajah S; Zhang Z; Xu C
    PLoS One; 2024; 19(3):e0299164. PubMed ID: 38478502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.