These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38723805)
1. In vitro and in vivo investigation of chitosan/silk fibroin injectable interpenetrating network hydrogel with microspheres for cartilage regeneration. Shaygani H; Shamloo A; Akbarnataj K; Maleki S Int J Biol Macromol; 2024 Jun; 270(Pt 1):132126. PubMed ID: 38723805 [TBL] [Abstract][Full Text] [Related]
2. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mirahmadi F; Tafazzoli-Shadpour M; Shokrgozar MA; Bonakdar S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4786-94. PubMed ID: 24094188 [TBL] [Abstract][Full Text] [Related]
3. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Li T; Song X; Weng C; Wang X; Gu L; Gong X; Wei Q; Duan X; Yang L; Chen C Int J Biol Macromol; 2019 Sep; 137():382-391. PubMed ID: 31271796 [TBL] [Abstract][Full Text] [Related]
4. Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. Zhou Y; Liang K; Zhao S; Zhang C; Li J; Yang H; Liu X; Yin X; Chen D; Xu W; Xiao P Int J Biol Macromol; 2018 Mar; 108():383-390. PubMed ID: 29225174 [TBL] [Abstract][Full Text] [Related]
5. Development and Evaluation of Gellan Gum/Silk Fibroin/Chondroitin Sulfate Ternary Injectable Hydrogel for Cartilage Tissue Engineering. Lee S; Choi J; Youn J; Lee Y; Kim W; Choe S; Song J; Reis RL; Khang G Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439850 [TBL] [Abstract][Full Text] [Related]
6. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Zhou F; Zhang X; Cai D; Li J; Mu Q; Zhang W; Zhu S; Jiang Y; Shen W; Zhang S; Ouyang HW Acta Biomater; 2017 Nov; 63():64-75. PubMed ID: 28890259 [TBL] [Abstract][Full Text] [Related]
8. The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels. Adali T; Kalkan R; Karimizarandi L Int J Biol Macromol; 2019 Mar; 124():541-547. PubMed ID: 30496865 [TBL] [Abstract][Full Text] [Related]
9. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Hu M; Yang J; Xu J Drug Deliv; 2021 Dec; 28(1):607-619. PubMed ID: 33739203 [TBL] [Abstract][Full Text] [Related]
10. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel. Heirani-Tabasi A; Hosseinzadeh S; Rabbani S; Ahmadi Tafti SH; Jamshidi K; Soufizomorrod M; Soleimani M Biomed Mater; 2021 Jul; 16(5):. PubMed ID: 34144542 [TBL] [Abstract][Full Text] [Related]
11. Injectable Ultrasonication-Induced Silk Fibroin Hydrogel for Cartilage Repair and Regeneration. Yuan T; Li Z; Zhang Y; Shen K; Zhang X; Xie R; Liu F; Fan W Tissue Eng Part A; 2021 Sep; 27(17-18):1213-1224. PubMed ID: 33353462 [TBL] [Abstract][Full Text] [Related]
12. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Vishwanath V; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2016; 27(7):657-74. PubMed ID: 26830046 [TBL] [Abstract][Full Text] [Related]
14. Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo. Shi W; Sun M; Hu X; Ren B; Cheng J; Li C; Duan X; Fu X; Zhang J; Chen H; Ao Y Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585319 [TBL] [Abstract][Full Text] [Related]
15. L-polylactic acid porous microspheres enhance the mechanical properties and in vivo stability of degummed silk/silk fibroin/gelatin scaffold. Li T; Liu B; Jiang Y; Lou Y; Chen K; Zhang D Biomed Mater; 2020 Dec; 16(1):015025. PubMed ID: 33181491 [TBL] [Abstract][Full Text] [Related]
16. Synergetic integrations of bone marrow stem cells and transforming growth factor-β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue. Zheng D; Chen T; Han L; Lv S; Yin J; Yang K; Wang Y; Xu N Int Wound J; 2022 Aug; 19(5):1023-1038. PubMed ID: 35266304 [TBL] [Abstract][Full Text] [Related]
17. Anisotropic Chitosan Scaffolds Generated by Electrostatic Flocking Combined with Alginate Hydrogel Support Chondrogenic Differentiation. Gossla E; Bernhardt A; Tonndorf R; Aibibu D; Cherif C; Gelinsky M Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502249 [TBL] [Abstract][Full Text] [Related]
18. An injectable self-healing alginate hydrogel with desirable mechanical and degradation properties for enhancing osteochondral regeneration. Fang Z; Liu G; Wang B; Meng H; Bahatibieke A; Li J; Ma M; Peng J; Zheng Y Carbohydr Polym; 2024 Nov; 343():122424. PubMed ID: 39174114 [TBL] [Abstract][Full Text] [Related]
19. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering. Montembault A; Tahiri K; Korwin-Zmijowska C; Chevalier X; Corvol MT; Domard A Biochimie; 2006 May; 88(5):551-64. PubMed ID: 16626850 [TBL] [Abstract][Full Text] [Related]
20. Engineering cartilage tissue interfaces using a natural glycosaminoglycan hydrogel matrix--an in vitro study. Remya NS; Nair PD Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):575-82. PubMed ID: 25427458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]