These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38724427)

  • 1. Influence of back optic zone diameter on corneal morphology with orthokeratology lenses.
    Li H; Zeng L; Chen C; Zhou J
    Cont Lens Anterior Eye; 2024 May; ():102178. PubMed ID: 38724427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Back Optic Zone Diameter in Myopia Control with Orthokeratology Lenses.
    Pauné J; Fonts S; Rodríguez L; Queirós A
    J Clin Med; 2021 Jan; 10(2):. PubMed ID: 33477514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of back optic zone diameter on relative corneal refractive power distribution and corneal higher-order aberrations in orthokeratology.
    Li N; Lin W; Zhang K; Li B; Su Q; Du B; Wei R
    Cont Lens Anterior Eye; 2023 Feb; 46(1):101755. PubMed ID: 36088210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the back optic zone diameter on the treatment zone area and axial elongation in orthokeratology.
    Ding W; Jiang D; Tian Y; Lu W; Shi L; Ji R; Zhao C; Leng L
    Cont Lens Anterior Eye; 2024 Apr; 47(2):102131. PubMed ID: 38403480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of two different orthokeratology lenses and defocus incorporated soft contact (DISC) lens in controlling myopia progression.
    Li N; Lin W; Liang R; Sun Z; Du B; Wei R
    Eye Vis (Lond); 2023 Oct; 10(1):43. PubMed ID: 37805535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-year results of the Variation of Orthokeratology Lens Treatment Zone (VOLTZ) Study: a prospective randomised clinical trial.
    Guo B; Cheung SW; Kojima R; Cho P
    Ophthalmic Physiol Opt; 2021 Jul; 41(4):702-714. PubMed ID: 33991112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Lens Design on Corneal Power Distribution in Orthokeratology.
    Zhang Z; Chen Z; Zhou J; Pauné J; Xue F; Zeng L; Qu X; Zhou X
    Optom Vis Sci; 2022 Apr; 99(4):363-371. PubMed ID: 35293879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering optical zone diameter, reverse curve width, and compression factor: impacts on visual performance and axial elongation in orthokeratology.
    Wu J; Zhang X; Wang L; Zhang P; Guo X; Xie P
    Cont Lens Anterior Eye; 2024 Jun; 47(3):102136. PubMed ID: 38503665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing treatment zone diameter in orthokeratology and its effect on peripheral ocular refraction.
    Gifford P; Tran M; Priestley C; Maseedupally V; Kang P
    Cont Lens Anterior Eye; 2020 Feb; 43(1):54-59. PubMed ID: 31776061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation of Orthokeratology Lens Treatment Zone (VOLTZ) Study: A 2-year randomised clinical trial.
    Guo B; Cheung SW; Kojima R; Cho P
    Ophthalmic Physiol Opt; 2023 Nov; 43(6):1449-1461. PubMed ID: 37545099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of small back optic zone design on myopia control for corneal refractive therapy (CRT): a one-year prospective cohort study.
    Li X; Zuo L; Zhao H; Hu J; Tang T; Wang K; Li Y; Zhao M
    Eye Vis (Lond); 2023 Nov; 10(1):47. PubMed ID: 37986014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on Related Factors of the Treatment Zone After Wearing Paragon CRT and Euclid Orthokeratology Lenses.
    Kou S; Ren Y; Zhuang X; Chen Y; Zhang X
    Eye Contact Lens; 2023 Dec; 49(12):521-527. PubMed ID: 37707469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can manipulation of orthokeratology lens parameters modify peripheral refraction?
    Kang P; Gifford P; Swarbrick H
    Optom Vis Sci; 2013 Nov; 90(11):1237-48. PubMed ID: 24076541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of the effects of orthokeratology on peripheral refraction and corneal topography.
    Kang P; Swarbrick H
    Ophthalmic Physiol Opt; 2013 May; 33(3):277-82. PubMed ID: 23347397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-year results for myopia control of orthokeratology with different back optic zone diameters: a randomized trial using a novel multispectral-based topographer.
    Tang WT; Luo XN; Zhao WJ; Liao J; Xu XY; Zhang HD; Zhang L
    Int J Ophthalmol; 2024; 17(2):324-330. PubMed ID: 38371262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The treatment zone size and its decentration influence axial elongation in children with orthokeratology treatment.
    Lin W; Li N; Gu T; Tang C; Liu G; Du B; Wei R
    BMC Ophthalmol; 2021 Oct; 21(1):362. PubMed ID: 34641799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Correlation between the increase in corneal higher-order aberrations and the control of children's myopic anisometropia after wearing orthokeratology lenses].
    Sun XX; Zhang Y; Chen YG
    Zhonghua Yan Ke Za Zhi; 2022 Apr; 58(4):250-258. PubMed ID: 35391511
    [No Abstract]   [Full Text] [Related]  

  • 18. Corneal power change is predictive of myopia progression in orthokeratology.
    Zhong Y; Chen Z; Xue F; Zhou J; Niu L; Zhou X
    Optom Vis Sci; 2014 Apr; 91(4):404-11. PubMed ID: 24492758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors associated with faster axial elongation after orthokeratology treatment.
    Qi Y; Liu L; Li Y; Zhang F
    BMC Ophthalmol; 2022 Feb; 22(1):62. PubMed ID: 35135507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors influencing treatment zone size in orthokeratology.
    Gruhl J; Widmer F; Nagl A; Bandlitz S
    Cont Lens Anterior Eye; 2023 Aug; 46(4):101848. PubMed ID: 37137758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.