BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38724481)

  • 41. Hypoxia-inducible factor 1α from a high-altitude fish enhances cytoprotection and elevates nitric oxide production in hypoxic environment.
    Wang C; Wu X; Hu X; Jiang H; Chen L; Xu Q
    Fish Physiol Biochem; 2020 Feb; 46(1):39-49. PubMed ID: 31595407
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physiology and Transcriptomics Analysis Reveal the Contribution of Lungs on High-Altitude Hypoxia Adaptation in Tibetan Sheep.
    Zhao P; Zhao F; Hu J; Wang J; Liu X; Zhao Z; Xi Q; Sun H; Li S; Luo Y
    Front Physiol; 2022; 13():885444. PubMed ID: 35634140
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genomic Variation, Population History, and Long-Term Genetic Adaptation to High Altitudes in Tibetan Partridge (Perdix hodgsoniae).
    Palacios C; Wang P; Wang N; Brown MA; Capatosto L; Du J; Jiang J; Zhang Q; Dahal N; Lamichhaney S
    Mol Biol Evol; 2023 Oct; 40(10):. PubMed ID: 37768198
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The protein level of hypoxia-inducible factor-1alpha is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes.
    Li HG; Ren YM; Guo SC; Cheng L; Wang DP; Yang J; Chang ZJ; Zhao XQ
    J Exp Zool A Ecol Genet Physiol; 2009 Feb; 311(2):134-41. PubMed ID: 19048601
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Epidemiology and genetic characteristics of murine kobuvirus from faecal samples of
    Zhang M; You F; Wu F; He H; Li Q; Chen Q
    J Gen Virol; 2021 Sep; 102(9):. PubMed ID: 34486970
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cytonuclear discordance among Southeast Asian black rats (Rattus rattus complex).
    Pagès M; Bazin E; Galan M; Chaval Y; Claude J; Herbreteau V; Michaux J; Piry S; Morand S; Cosson JF
    Mol Ecol; 2013 Feb; 22(4):1019-34. PubMed ID: 23278980
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Association of Age with the Expression of Hypoxia-Inducible Factors HIF-1α, HIF-2α, HIF-3α and VEGF in Lung and Heart of Tibetan Sheep.
    He Y; Munday JS; Perrott M; Wang G; Liu X
    Animals (Basel); 2019 Sep; 9(9):. PubMed ID: 31514457
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intra- and interspecific variation of the mitochondrial genome in Rattus norvegicus and Rattus rattus: restriction enzyme analysis of variant mitochondrial DNA molecules and their evolutionary relationships.
    Brown GG; Simpson MV
    Genetics; 1981 Jan; 97(1):125-43. PubMed ID: 6266911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HIF-1 regulates energy metabolism of the Tibetan chicken brain during embryo development under hypoxia.
    Tang Q; Xu Q; Ding C; Zhang H; Ling Y; Wu C; Fang M
    Am J Physiol Regul Integr Comp Physiol; 2021 May; 320(5):R704-R713. PubMed ID: 33596720
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Haemoplasma Prevalence and Diversity in Three Invasive
    Retief L; Chimimba CT; Oosthuizen MC; Matshotshi A; Bastos ADS
    Microorganisms; 2022 Aug; 10(8):. PubMed ID: 36014050
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative transcriptomic and proteomic analyses provide insights into functional genes for hypoxic adaptation in embryos of Tibetan chickens.
    Zhang Y; Zheng X; Zhang Y; Zhang H; Zhang X; Zhang H
    Sci Rep; 2020 Jul; 10(1):11213. PubMed ID: 32641697
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptome analysis reveals molecular regulation mechanism of Tibet sheep tolerance to high altitude oxygen environment.
    An L; Li Y; Yaq L; Wang Y; Dai Q; Du S; Ru Y; Zhoucuo Q; Wang J
    Anim Biotechnol; 2023 Dec; 34(9):5097-5112. PubMed ID: 37729444
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika.
    Wei D; Wei L; Li X; Wang Y; Wei L
    Int J Environ Res Public Health; 2016 Aug; 13(8):. PubMed ID: 27490559
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Black rat ( Rattus rattus) genomic variability characterized by chromosome painting.
    Cavagna P; Stone G; Stanyon R
    Mamm Genome; 2002 Mar; 13(3):157-63. PubMed ID: 11919687
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic differentiation of geographic populations of Rattus tanezumi based on the mitochondrial Cytb gene.
    Liu Y; Yao L; Ci Y; Cao X; Zhao M; Li Y; Zhang X
    PLoS One; 2021; 16(3):e0248102. PubMed ID: 33735257
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diverse energy metabolism patterns in females in Neodon fuscus, Lasiopodomys brandtii, and Mus musculus revealed by comparative transcriptomics under hypoxic conditions.
    Li M; Tian X; Li X; Huang M; Huang S; Wu Y; Jiang M; Shi Y; Shi L; Wang Z
    Sci Total Environ; 2021 Aug; 783():147130. PubMed ID: 34088150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α.
    van Patot MC; Gassmann M
    High Alt Med Biol; 2011; 12(2):157-67. PubMed ID: 21718164
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient utilization of aerobic metabolism helps Tibetan locusts conquer hypoxia.
    Zhao D; Zhang Z; Cease A; Harrison J; Kang L
    BMC Genomics; 2013 Sep; 14():631. PubMed ID: 24047108
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era.
    Petousi N; Robbins PA
    J Appl Physiol (1985); 2014 Apr; 116(7):875-84. PubMed ID: 24201705
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments.
    Zhang QL; Zhang L; Yang XZ; Wang XT; Li XP; Wang J; Chen JY; Yuan ML
    Sci Rep; 2017 Dec; 7(1):16972. PubMed ID: 29208990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.