BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 38724548)

  • 1. Prediction of m6A and m5C at single-molecule resolution reveals a transcriptome-wide co-occurrence of RNA modifications.
    Acera Mateos P; J Sethi A; Ravindran A; Srivastava A; Woodward K; Mahmud S; Kanchi M; Guarnacci M; Xu J; W S Yuen Z; Zhou Y; Sneddon A; Hamilton W; Gao J; M Starrs L; Hayashi R; Wickramasinghe V; Zarnack K; Preiss T; Burgio G; Dehorter N; E Shirokikh N; Eyras E
    Nat Commun; 2024 May; 15(1):3899. PubMed ID: 38724548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain.
    Amort T; Rieder D; Wille A; Khokhlova-Cubberley D; Riml C; Trixl L; Jia XY; Micura R; Lusser A
    Genome Biol; 2017 Jan; 18(1):1. PubMed ID: 28077169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing 5-methylcytosine in the mammalian epitranscriptome.
    Hussain S; Aleksic J; Blanco S; Dietmann S; Frye M
    Genome Biol; 2013 Nov; 14(11):215. PubMed ID: 24286375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional interplay within the epitranscriptome: Reality or fiction?
    Worpenberg L; Paolantoni C; Roignant JY
    Bioessays; 2022 Feb; 44(2):e2100174. PubMed ID: 34873719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.
    Chen K; Wei Z; Zhang Q; Wu X; Rong R; Lu Z; Su J; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2019 Apr; 47(7):e41. PubMed ID: 30993345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of epitranscriptomic marks on post-transcriptional regulation in plants.
    Yu X; Sharma B; Gregory BD
    Brief Funct Genomics; 2021 Mar; 20(2):113-124. PubMed ID: 33274735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cracking the epitranscriptome.
    Schwartz S
    RNA; 2016 Feb; 22(2):169-74. PubMed ID: 26787305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data.
    Xuan JJ; Sun WJ; Lin PH; Zhou KR; Liu S; Zheng LL; Qu LH; Yang JH
    Nucleic Acids Res; 2018 Jan; 46(D1):D327-D334. PubMed ID: 29040692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the epitranscriptome: A green perspective.
    Burgess A; David R; Searle IR
    J Integr Plant Biol; 2016 Oct; 58(10):822-835. PubMed ID: 27172004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposition of RNA methylome reveals co-methylation patterns induced by latent enzymatic regulators of the epitranscriptome.
    Liu L; Zhang SW; Zhang YC; Liu H; Zhang L; Chen R; Huang Y; Meng J
    Mol Biosyst; 2015 Jan; 11(1):262-74. PubMed ID: 25370990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WHISTLE: A Functionally Annotated High-Accuracy Map of Human m
    Xu Q; Chen K; Meng J
    Methods Mol Biol; 2021; 2284():519-529. PubMed ID: 33835461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the regulatory role of RNA methylation modifications in glioma.
    Long S; Yan Y; Xu H; Wang L; Jiang J; Xu Z; Liu R; Zhou Q; Huang X; Chen J; Li Z; Wei W; Li X
    J Transl Med; 2023 Nov; 21(1):810. PubMed ID: 37964279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the plant epitranscriptome.
    Vandivier LE; Gregory BD
    J Exp Bot; 2018 Sep; 69(20):4659-4665. PubMed ID: 30020491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of m
    Nombela P; Miguel-López B; Blanco S
    Mol Cancer; 2021 Jan; 20(1):18. PubMed ID: 33461542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNAMethPre: A Web Server for the Prediction and Query of mRNA m6A Sites.
    Xiang S; Liu K; Yan Z; Zhang Y; Sun Z
    PLoS One; 2016; 11(10):e0162707. PubMed ID: 27723837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Emerging Roles of Cytosine-5 Methylation in mRNAs.
    Hussain S
    Trends Genet; 2021 Jun; 37(6):498-500. PubMed ID: 33622495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epitranscriptomics: Correlation of N6-methyladenosine RNA methylation and pathway dysregulation in the hippocampus of HIV transgenic rats.
    Fu Y; Zorman B; Sumazin P; Sanna PP; Repunte-Canonigo V
    PLoS One; 2019; 14(1):e0203566. PubMed ID: 30653517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. m5C-Atlas: a comprehensive database for decoding and annotating the 5-methylcytosine (m5C) epitranscriptome.
    Ma J; Song B; Wei Z; Huang D; Zhang Y; Su J; de Magalhães JP; Rigden DJ; Meng J; Chen K
    Nucleic Acids Res; 2022 Jan; 50(D1):D196-D203. PubMed ID: 34986603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring m6A and m5C Epitranscriptomes upon Viral Infection: an Example with HIV.
    Cristinelli S; Angelino P; Ciuffi A
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35311830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome.
    Tang Y; Chen K; Song B; Ma J; Wu X; Xu Q; Wei Z; Su J; Liu G; Rong R; Lu Z; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2021 Jan; 49(D1):D134-D143. PubMed ID: 32821938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.