These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38724556)

  • 1. Bulk transparent supramolecular glass enabled by host-guest molecular recognition.
    Cai C; Wu S; Zhang Y; Li F; Tan Z; Dong S
    Nat Commun; 2024 May; 15(1):3929. PubMed ID: 38724556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrocyclic Supramolecular Glass: New Type of Supramolecular Transparent Materials.
    Yao G; Pan Y; Li F; Dong S
    Small; 2024 Nov; 20(45):e2405337. PubMed ID: 39073234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.
    Dong S; Zheng B; Wang F; Huang F
    Acc Chem Res; 2014 Jul; 47(7):1982-94. PubMed ID: 24684594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically transparent and mechanically tough glass with impact resistance and flame retardancy enabled by covalent/supramolecular interactions.
    Cai C; Yao G; Zhang Y; Zhang S; Li F; Tan Z; Dong S
    Mater Horiz; 2024 Nov; 11(22):5732-5739. PubMed ID: 39252527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Self-Cross-Linking Supramolecular Polymer Network Enabled by Crown-Ether-Based Molecular Recognition.
    Wang L; Cheng L; Li G; Liu K; Zhang Z; Li P; Dong S; Yu W; Huang F; Yan X
    J Am Chem Soc; 2020 Jan; 142(4):2051-2058. PubMed ID: 31905287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bulk and transparent supramolecular glass from evaporation-induced noncovalent polymerization of nucleosides.
    Wu S; Cai C; Wang X; Zhang Q; Tan Z; Li F; Dong S
    Mater Horiz; 2023 Oct; 10(11):5152-5160. PubMed ID: 37700633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.
    Hu J; Liu S
    Acc Chem Res; 2014 Jul; 47(7):2084-95. PubMed ID: 24742049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular control over the variability of color and fluorescence in low-molecular-weight glass.
    Zhang Y; Cai C; Li F; Tan X; Li Q; Ni X; Dong S
    Mater Horiz; 2024 Nov; 11(22):5641-5649. PubMed ID: 39192671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Functionalization of Cyclodextrin Derivatives to Create Supramolecular Pharmaceutical Materials].
    Osaki M
    Yakugaku Zasshi; 2019; 139(2):165-173. PubMed ID: 30713225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iptycene-derived crown ether hosts for molecular recognition and self-assembly.
    Han Y; Meng Z; Ma YX; Chen CF
    Acc Chem Res; 2014 Jul; 47(7):2026-40. PubMed ID: 24877894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates.
    Li C
    Chem Commun (Camb); 2014 Oct; 50(83):12420-33. PubMed ID: 25033095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials.
    Liu J; Lan Y; Yu Z; Tan CS; Parker RM; Abell C; Scherman OA
    Acc Chem Res; 2017 Feb; 50(2):208-217. PubMed ID: 28075551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Polymerization Engineered with Molecular Recognition.
    Haino T
    Chem Rec; 2015 Oct; 15(5):837-53. PubMed ID: 26178364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Supramolecular Bioactive Surfaces via β-Cyclodextrin-Based Host-Guest Interactions.
    Zhan W; Wei T; Yu Q; Chen H
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36585-36601. PubMed ID: 30285413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular Purely Organic Room-Temperature Phosphorescence.
    Ma XK; Liu Y
    Acc Chem Res; 2021 Sep; 54(17):3403-3414. PubMed ID: 34403251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host-guest complexation.
    Wang J; Qiu Z; Wang Y; Li L; Guo X; Pham DT; Lincoln SF; Prud'homme RK
    Beilstein J Org Chem; 2016; 12():50-72. PubMed ID: 26877808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable Construction of Temperature-Sensitive Supramolecular Hydrogel Based on Cellulose and Cyclodextrin.
    Wu J; Lu Q; Wang H; Lu B; Huang B
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrocycle-Based Solid-State Supramolecular Polymers.
    Hua B; Shao L; Li M; Liang H; Huang F
    Acc Chem Res; 2022 Apr; 55(7):1025-1034. PubMed ID: 35321546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.