These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38724588)

  • 1. Unraveling dispersion and buoyancy dynamics around radial A + B → C reaction fronts: microgravity experiments and numerical simulations.
    Stergiou Y; Escala DM; Papp P; Horváth D; Hauser MJB; Brau F; De Wit A; Tóth Á; Eckert K; Schwarzenberger K
    NPJ Microgravity; 2024 May; 10(1):53. PubMed ID: 38724588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of A+B→C reaction fronts under radial advection in a Poiseuille flow.
    Comolli A; De Wit A; Brau F
    Phys Rev E; 2021 Oct; 104(4-1):044206. PubMed ID: 34781512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A + B → C reaction fronts in Hele-Shaw cells under modulated gravitational acceleration.
    Eckert K; Rongy L; De Wit A
    Phys Chem Chem Phys; 2012 May; 14(20):7337-45. PubMed ID: 22523751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Marangoni flows on the dynamics of isothermal A + B → C reaction fronts.
    Tiani R; Rongy L
    J Chem Phys; 2016 Sep; 145(12):124701. PubMed ID: 27782642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of A + B --> C reaction fronts in the presence of buoyancy-driven convection.
    Rongy L; Trevelyan PM; De Wit A
    Phys Rev Lett; 2008 Aug; 101(8):084503. PubMed ID: 18764622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marangoni-driven nonlinear dynamics of bimolecular frontal systems: a general classification for equal diffusion coefficients.
    Tiani R; Rongy L
    Philos Trans A Math Phys Eng Sci; 2023 Apr; 381(2245):20220080. PubMed ID: 36842981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally.
    Rongy L; Schuszter G; Sinkó Z; Tóth T; Horváth D; Tóth A; De Wit A
    Chaos; 2009 Jun; 19(2):023110. PubMed ID: 19566245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of radial advection on autocatalytic reaction-diffusion fronts.
    Comolli A; Negrojević L; Brau F; De Wit A
    Phys Chem Chem Phys; 2023 Apr; 25(15):10604-10619. PubMed ID: 36994998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and compositional driven convection in thin reaction fronts.
    Quenta J; Vasquez DA
    Phys Rev E; 2024 Mar; 109(3-2):035104. PubMed ID: 38632785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convective dynamics of traveling autocatalytic fronts in a modulated gravity field.
    Horváth D; Budroni MA; Bába P; Rongy L; De Wit A; Eckert K; Hauser MJ; Tóth Á
    Phys Chem Chem Phys; 2014 Dec; 16(47):26279-87. PubMed ID: 25362974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Front fingering and complex dynamics driven by the interaction of buoyancy and diffusive instabilities.
    D'Hernoncourt J; Merkin JH; De Wit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):035301. PubMed ID: 17930295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells.
    Jarrige N; Bou Malham I; Martin J; Rakotomalala N; Salin D; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066311. PubMed ID: 20866526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of A+B → C reaction fronts under radial advection in three dimensions.
    Comolli A; De Wit A; Brau F
    Phys Rev E; 2019 Nov; 100(5-1):052213. PubMed ID: 31869892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface tension- and buoyancy-driven flows across horizontally propagating chemical fronts.
    Tiani R; De Wit A; Rongy L
    Adv Colloid Interface Sci; 2018 May; 255():76-83. PubMed ID: 28826815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts.
    D'Hernoncourt J; Zebib A; De Wit A
    Chaos; 2007 Mar; 17(1):013109. PubMed ID: 17411245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Buoyancy-Driven Dissolution Instability in a Horizontal Hele-Shaw Cell.
    Li K; Hu R; Wang T; Yang Z; Chen YF
    Langmuir; 2024 Feb; 40(8):4186-4197. PubMed ID: 38358822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers.
    Rongy L; De Wit A
    J Chem Phys; 2009 Nov; 131(18):184701. PubMed ID: 19916617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The measurement of solute diffusion coefficients in dilute liquid alloys: the influence of unit gravity and g-jitter on buoyancy convection.
    Smith RW; Yang BJ; Huang WD
    Ann N Y Acad Sci; 2004 Nov; 1027():110-28. PubMed ID: 15644350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction driven convection around a stably stratified chemical front.
    D'Hernoncourt J; Zebib A; De Wit A
    Phys Rev Lett; 2006 Apr; 96(15):154501. PubMed ID: 16712159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.