These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38724849)

  • 1. Development of an environmentally foamed concrete incorporating red mud.
    Chen D; Chen M; Yang X; Zhao Y; Zhang Y; Zhang J
    Environ Sci Pollut Res Int; 2024 May; 31(24):35353-35368. PubMed ID: 38724849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and property studies of ferric sulfoaluminate cement based on Bayer red mud and phosphogypsum.
    Ge C; Zhao Y; Li C; XunqiaoYan ; Liu R
    Environ Sci Pollut Res Int; 2024 May; 31(25):37594-37609. PubMed ID: 38780842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synergistic hydration mechanism and environmental safety of multiple solid wastes in red mud-based cementitious materials.
    Zhu J; Yue H; Ma L; Li Z; Bai R
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):79241-79257. PubMed ID: 37286836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and influencing factors of high-performance concrete based on copper tailings for efficient solidification of heavy metals.
    Xie R; Ge R; Li Z; Qu G; Zhang Y; Xu Y; Zeng Y; Li Z
    J Environ Manage; 2023 Jan; 325(Pt B):116469. PubMed ID: 36323112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on hydration mechanism and environmental safety of thermal activated red mud-based cementitious materials.
    Zhu J; Yue H; Ma L; Li Z; Bai R
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55905-55921. PubMed ID: 36905547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental risks and mechanical evaluation of recycling red mud in bricks.
    Arroyo F; Luna-Galiano Y; Leiva C; Vilches LF; Fernández-Pereira C
    Environ Res; 2020 Jul; 186():109537. PubMed ID: 32315825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration Properties of Cement with Liquefied Red Mud Neutralized by Nitric Acid.
    Kang S; Kang H; Lee B
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34070106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling red mud from the production of aluminium as a red cement-based mortar.
    Yang X; Zhao J; Li H; Zhao P; Chen Q
    Waste Manag Res; 2017 May; 35(5):500-507. PubMed ID: 28142600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Feasibility Study of Low Cement Content Foamed Concrete Using High Volume of Waste Lime Mud and Fly Ash for Road Embankment.
    Li Z; Yuan H; Gao F; Zhang H; Ge Z; Wang K; Sun R; Guan Y; Ling Y; Jiang N
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and Properties of Porous Concrete Based on Geopolymer of Red Mud and Yellow River Sediment.
    Lv Y; Chen Y; Dai W; Yang H; Jiang L; Li K; Jin W
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental assessment of cement hydration and leaching characteristics for waste-to-energy bottom ash mixed with concrete.
    An J; Nam BH; Cho BH; Eun J
    J Air Waste Manag Assoc; 2021 Jul; 71(7):906-922. PubMed ID: 33818306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the bond strength and microstructure of the interfacial transition zone between cement paste and aggregate modified by Bayer red mud.
    Li X; Zhang Q; Mao S
    J Hazard Mater; 2021 Feb; 403():123482. PubMed ID: 33264845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between Density and Compressive Strength of Foamed Concrete.
    Othman R; Jaya RP; Muthusamy K; Sulaiman M; Duraisamy Y; Abdullah MMAB; Przybył A; Sochacki W; Skrzypczak T; Vizureanu P; Sandu AV
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on Preparation and Interfacial Transition Zone Microstructure of Red Mud-Yellow Phosphorus Slag-Cement Concrete.
    Su Z; Li X
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.
    Lederer J; Trinkel V; Fellner J
    Waste Manag; 2017 Feb; 60():247-258. PubMed ID: 27815031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of red mud based binder for the immobilization of copper, lead and zinc.
    Wang F; Pan H; Xu J
    Environ Pollut; 2020 Aug; 263(Pt A):114416. PubMed ID: 32224388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption by and artificial release of zinc and lead from porous concrete for recycling of adsorbed zinc and lead and of porous concrete to reduce urban non-point heavy metal runoff.
    Harada S; Yanbe M
    Chemosphere; 2018 Apr; 197():451-456. PubMed ID: 29360598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of recycled concrete aggregates for their suitability in construction activities: An experimental study.
    Puthussery JV; Kumar R; Garg A
    Waste Manag; 2017 Feb; 60():270-276. PubMed ID: 27353393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of a new type of cemented paste backfill with solid waste from carbide slag, soda residue, and red mud: mechanism, optimization, and its environmental effects.
    Li B; Sun Q; Liu Z; Tan Y
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):96660-96677. PubMed ID: 37578582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Property of concrete made of recycled shale gas drilling cuttings.
    Wang CQ; Liu K; Huang DM
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2098-2106. PubMed ID: 34363170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.