BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38725184)

  • 1. Bradyrhizobium japonicum HmuP is an RNA-binding protein that positively controls hmuR operon expression by suppression of a negative regulatory RNA element in the 5' untranslated region.
    Wu P; Ong A; O'Brian MR
    Mol Microbiol; 2024 Jun; 121(6):1217-1227. PubMed ID: 38725184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HmuP is a coactivator of Irr-dependent expression of heme utilization genes in Bradyrhizobium japonicum.
    Escamilla-Hernandez R; O'Brian MR
    J Bacteriol; 2012 Jun; 194(12):3137-43. PubMed ID: 22505680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum.
    Nienaber A; Hennecke H; Fischer HM
    Mol Microbiol; 2001 Aug; 41(4):787-800. PubMed ID: 11532144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly conserved nucleotide motifs present in the 5'UTR of the heme-receptor gene shmR are required for HmuP-dependent expression of shmR in Ensifer meliloti.
    Amarelle V; Koziol U; Fabiano E
    Biometals; 2019 Apr; 32(2):273-291. PubMed ID: 30810877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Iron control element, acting in positive and negative control of iron-regulated Bradyrhizobium japonicum genes, is a target for the Irr protein.
    Rudolph G; Semini G; Hauser F; Lindemann A; Friberg M; Hennecke H; Fischer HM
    J Bacteriol; 2006 Jan; 188(2):733-44. PubMed ID: 16385063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization.
    Olczak T; Sroka A; Potempa J; Olczak M
    Arch Microbiol; 2008 Mar; 189(3):197-210. PubMed ID: 17922109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of
    Schwiesow L; Mettert E; Wei Y; Miller HK; Herrera NG; Balderas D; Kiley PJ; Auerbuch V
    Front Cell Infect Microbiol; 2018; 8():47. PubMed ID: 29520342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum.
    Hamza I; Qi Z; King ND; O'Brian MR
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():669-676. PubMed ID: 10746770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Small Protein HemP Is a Transcriptional Activator for the Hemin Uptake Operon in Burkholderia multivorans ATCC 17616.
    Sato T; Nonoyama S; Kimura A; Nagata Y; Ohtsubo Y; Tsuda M
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential control of Bradyrhizobium japonicum iron stimulon genes through variable affinity of the iron response regulator (Irr) for target gene promoters and selective loss of activator function.
    Jaggavarapu S; O'Brian MR
    Mol Microbiol; 2014 May; 92(3):609-24. PubMed ID: 24646221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive control of ferric siderophore receptor gene expression by the Irr protein in Bradyrhizobium japonicum.
    Small SK; Puri S; Sangwan I; O'Brian MR
    J Bacteriol; 2009 Mar; 191(5):1361-8. PubMed ID: 19114488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli.
    Kouse AB; Righetti F; Kortmann J; Narberhaus F; Murphy ER
    PLoS One; 2013; 8(5):e63781. PubMed ID: 23704938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of bacterial iron homeostasis by manganese.
    Puri S; Hohle TH; O'Brian MR
    Proc Natl Acad Sci U S A; 2010 Jun; 107(23):10691-5. PubMed ID: 20498065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Bradyrhizobium japonicum frcB gene encodes a diheme ferric reductase.
    Small SK; O'Brian MR
    J Bacteriol; 2011 Aug; 193(16):4088-94. PubMed ID: 21705608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. trp RNA-binding attenuation protein-5' stem-loop RNA interaction is required for proper transcription attenuation control of the Bacillus subtilis trpEDCFBA operon.
    Du H; Yakhnin AV; Dharmaraj S; Babitzke P
    J Bacteriol; 2000 Apr; 182(7):1819-27. PubMed ID: 10714985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis.
    Simpson W; Olczak T; Genco CA
    J Bacteriol; 2000 Oct; 182(20):5737-48. PubMed ID: 11004172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new small regulatory protein, HmuP, modulates haemin acquisition in Sinorhizobium meliloti.
    Amarelle V; Koziol U; Rosconi F; Noya F; O'Brian MR; Fabiano E
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1873-1882. PubMed ID: 20167620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into heme-mediated transcriptional regulation via a bacterial manganese-binding iron regulator, iron response regulator (Irr).
    Nam D; Matsumoto Y; Uchida T; O'Brian MR; Ishimori K
    J Biol Chem; 2020 Aug; 295(32):11316-11325. PubMed ID: 32554810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The malS-5'UTR weakens the ability of Salmonella enterica serovar Typhi to survive in macrophages by increasing intracellular ATP levels.
    Dong F; Xia L; Lu R; Zhao X; Zhang Y; Zhang Y; Huang X
    Microb Pathog; 2018 Feb; 115():321-331. PubMed ID: 29306008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heme-responsive DNA binding by the global iron regulator Irr from Rhizobium leguminosarum.
    Singleton C; White GF; Todd JD; Marritt SJ; Cheesman MR; Johnston AW; Le Brun NE
    J Biol Chem; 2010 May; 285(21):16023-31. PubMed ID: 20233710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.