BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38725529)

  • 1. Predicting capillary vessel network hemodynamics in silico by machine learning.
    Ebrahimi S; Bagchi P
    PNAS Nexus; 2024 Feb; 3(2):pgae043. PubMed ID: 38725529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of machine learning in predicting blood flow and red cell distribution in capillary vessel networks.
    Ebrahimi S; Bagchi P
    J R Soc Interface; 2022 Aug; 19(193):20220306. PubMed ID: 35946164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks.
    Ebrahimi S; Bagchi P
    Sci Rep; 2022 Mar; 12(1):4304. PubMed ID: 35277592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle.
    Yalcin O; Jani VP; Johnson PC; Cabrales P
    Front Physiol; 2018; 9():168. PubMed ID: 29615916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiogenic Microvascular Wall Shear Stress Patterns Revealed Through Three-dimensional Red Blood Cell Resolved Modeling.
    Hossain MMN; Hu NW; Abdelhamid M; Singh S; Murfee WL; Balogh P
    Function (Oxf); 2023; 4(6):zqad046. PubMed ID: 37753184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary module haemodynamics and mechanisms of blood flow regulation in skeletal muscle capillary networks: Experimental and computational analysis.
    Mendelson AA; Ho E; Scott S; Vijay R; Hunter T; Milkovich S; Ellis CG; Goldman D
    J Physiol; 2022 Apr; 600(8):1867-1888. PubMed ID: 35067970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Microvascular Wall Shear Rate Function Derived From In Vivo Hemodynamic and Geometric Parameters in Continuously Branching Arterioles.
    Al-Khazraji BK; Jackson DN; Goldman D
    Microcirculation; 2016 May; 23(4):311-9. PubMed ID: 27018869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EVA: Fully automatic hemodynamics assessment system for the bulbar conjunctival microvascular network.
    Yun Z; Xu Q; Wang G; Jin S; Lin G; Feng Q; Yuan J
    Comput Methods Programs Biomed; 2022 Apr; 216():106631. PubMed ID: 35123347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV.
    Chen CY; Patrick MJ; Corti P; Kowalski W; Roman BL; Pekkan K
    Biorheology; 2011; 48(5):305-21. PubMed ID: 22433571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks.
    Balogh P; Bagchi P
    Biophys J; 2017 Dec; 113(12):2815-2826. PubMed ID: 29262374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of cell-free-layer width on rheological parameters: Combining empirical data on flow separation at microvascular bifurcations with geometrical considerations.
    Köry J; Maini PK; Pitt-Francis JM; Byrne HM
    Phys Rev E; 2022 Jan; 105(1-1):014414. PubMed ID: 35193324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid discrete-continuum approach for modelling microcirculatory blood flow.
    Shipley RJ; Smith AF; Sweeney PW; Pries AR; Secomb TW
    Math Med Biol; 2020 Feb; 37(1):40-57. PubMed ID: 30892609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for estimating pulsatile wall shear stress from one-dimensional velocity waveforms.
    Muskat JC; Babbs CF; Goergen CJ; Rayz VL
    Physiol Rep; 2023 Apr; 11(7):e15628. PubMed ID: 37066977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuum microhaemodynamics modelling using inverse rheology.
    van Batenburg-Sherwood J; Balabani S
    Biomech Model Mechanobiol; 2022 Feb; 21(1):335-361. PubMed ID: 34907491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics.
    Hademenos GJ; Massoud TF; Viñuela F
    Neurosurgery; 1996 May; 38(5):1005-14; discussion 1014-5. PubMed ID: 8727827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of hostile hemodynamics to aneurysm geometry via unsupervised shape interpolation.
    MacDonald DE; Cancelliere NM; Pereira VM; Steinman DA
    Comput Methods Programs Biomed; 2023 Nov; 241():107762. PubMed ID: 37598472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergence of the normalized wall shear stress as an effective computational template of low-density lipoprotein polarization at the arterial blood-vessel wall interface.
    Mazzi V; De Nisco G; Calò K; Chiastra C; Daemen J; Steinman DA; Wentzel JJ; Morbiducci U; Gallo D
    Comput Methods Programs Biomed; 2022 Nov; 226():107174. PubMed ID: 36223707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.