These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38725529)

  • 21. Divergence of the normalized wall shear stress as an effective computational template of low-density lipoprotein polarization at the arterial blood-vessel wall interface.
    Mazzi V; De Nisco G; Calò K; Chiastra C; Daemen J; Steinman DA; Wentzel JJ; Morbiducci U; Gallo D
    Comput Methods Programs Biomed; 2022 Nov; 226():107174. PubMed ID: 36223707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local vs. Global Blood Flow Modulation in Artificial Microvascular Networks: Effects on Red Blood Cell Distribution and Partitioning.
    Mantegazza A; Ungari M; Clavica F; Obrist D
    Front Physiol; 2020; 11():566273. PubMed ID: 33123027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling lower-limb peripheral arterial disease using clinically available datasets: impact of inflow boundary conditions on hemodynamic indices for restenosis prediction.
    Ninno F; Chiastra C; Colombo M; Dardik A; Strosberg D; Aboian E; Tsui J; Bartlett M; Balabani S; Díaz-Zuccarini V
    Comput Methods Programs Biomed; 2024 Jun; 251():108214. PubMed ID: 38759252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.
    Sosa JM; Nielsen ND; Vignes SM; Chen TG; Shevkoplyas SS
    Clin Hemorheol Microcirc; 2014; 57(3):275-89. PubMed ID: 23603326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation.
    Ng YC; Namgung B; Tien SL; Leo HL; Kim S
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H487-97. PubMed ID: 27233764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Red blood cells stabilize flow in brain microvascular networks.
    Schmid F; Barrett MJP; Obrist D; Weber B; Jenny P
    PLoS Comput Biol; 2019 Aug; 15(8):e1007231. PubMed ID: 31469820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D network model of NO transport in tissue.
    Chen X; Buerk DG; Barbee KA; Kirby P; Jaron D
    Med Biol Eng Comput; 2011 Jun; 49(6):633-47. PubMed ID: 21431938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mesh neural networks for SE(3)-equivariant hemodynamics estimation on the artery wall.
    Suk J; de Haan P; Lippe P; Brune C; Wolterink JM
    Comput Biol Med; 2024 May; 173():108328. PubMed ID: 38552282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hemodynamic systems analysis of capillary network remodeling during the progression of type 2 diabetes.
    Benedict KF; Coffin GS; Barrett EJ; Skalak TC
    Microcirculation; 2011 Jan; 18(1):63-73. PubMed ID: 21166927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Red blood cell lingering modulates hematocrit distribution in the microcirculation.
    Rashidi Y; Simionato G; Zhou Q; John T; Kihm A; Bendaoud M; Krüger T; Bernabeu MO; Kaestner L; Laschke MW; Menger MD; Wagner C; Darras A
    Biophys J; 2023 Apr; 122(8):1526-1537. PubMed ID: 36932676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sublingual Microcirculation Specificity of Sickle Cell Patients: Morphology of the Microvascular Bed, Blood Rheology, and Local Hemodynamics.
    Sant S; Gouraud E; Boisson C; Nader E; Goparaju M; Cannas G; Gauthier A; Joly P; Renoux C; Merazga S; Hautier C; Connes P; Fenech M
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-fidelity virtual stenting: modeling of flow diverter deployment for hemodynamic characterization of complex intracranial aneurysms.
    Xiang J; Damiano RJ; Lin N; Snyder KV; Siddiqui AH; Levy EI; Meng H
    J Neurosurg; 2015 Oct; 123(4):832-40. PubMed ID: 26090829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Semi-automated red blood cell core detection in blood micro-flow.
    Fenech M; Le AV; Salame M; Gliah O; Chartrand C
    Microvasc Res; 2023 May; 147():104496. PubMed ID: 36739962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hemodynamic computation using multiphase flow dynamics in a right coronary artery.
    Jung J; Hassanein A; Lyczkowski RW
    Ann Biomed Eng; 2006 Mar; 34(3):393-407. PubMed ID: 16477502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling coronary flows: impact of differently measured inflow boundary conditions on vessel-specific computational hemodynamic profiles.
    Lodi Rizzini M; Candreva A; Chiastra C; Gallinoro E; Calò K; D'Ascenzo F; De Bruyne B; Mizukami T; Collet C; Gallo D; Morbiducci U
    Comput Methods Programs Biomed; 2022 Jun; 221():106882. PubMed ID: 35597205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inter-visit variability of conjunctival microvascular hemodynamic measurements in healthy and diabetic retinopathy subjects.
    Khansari MM; Tan M; Karamian P; Shahidi M
    Microvasc Res; 2018 Jul; 118():7-11. PubMed ID: 29438814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells.
    Wei Y; Mu L; Tang Y; Shen Z; He Y
    Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A homogenized two-phase computational framework for meso- and macroscale blood flow simulations.
    Karmakar A; Burgreen GW; Rydquist G; Antaki JF
    Comput Methods Programs Biomed; 2024 Apr; 247():108090. PubMed ID: 38394788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling blood flow in coronary arteries: Newtonian or shear-thinning non-Newtonian rheology?
    De Nisco G; Lodi Rizzini M; Verardi R; Chiastra C; Candreva A; De Ferrari G; D'Ascenzo F; Gallo D; Morbiducci U
    Comput Methods Programs Biomed; 2023 Dec; 242():107823. PubMed ID: 37757568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.